Article tools
  • View PDF
  • Cite this article
  • E-mail this article
  • Send a letter
  • Information on reuse
  • Standard abbreviations
  • Article usage
Author information
Need help?

Research Article

Recombinant latent transforming growth factor beta 1 has a longer plasma half-life in rats than active transforming growth factor beta 1, and a different tissue distribution.

L M Wakefield, T S Winokur, R S Hollands, K Christopherson, A D Levinson and M B Sporn

Laboratory of Chemoprevention, National Cancer Institute, Bethesda, Maryland 20892.

Published December 1990

Transforming growth factor beta 1 (TGF-beta 1) is a key regulator of cell growth and differentiation. Under normal physiological conditions, it is made as a biologically latent complex whose significance is unknown. Previous work has indicated that active TGF-beta 1 has a very short plasma half-life in rats (Coffey, R. J., L. J. Kost, R. M. Lyons, H. L. Moses, and N. F. La-Russo. 1987. J. Clin. Invest. 80:750-757). We have investigated the possibility that latent complex formation may extend the plasma half-life of TGF-beta 1 and alter its organ distribution. Radiolabeled latent TGF-beta 1 was formed by noncovalent association of 125I-TGF-beta 1 with the TGF-beta 1 precursor "pro" region from recombinant sources. TGF-beta 1 in this latent complex had a greatly extended plasma half-life (greater than 100 min) in rats compared with active TGF-beta 1 (2-3 min). Whereas active TGF-beta 1 was rapidly taken up by the liver, kidneys, lungs, and spleen and degraded, TGF-beta 1 in the latent complex was largely confined to the circulation, and was less than 5% degraded after 90 min. The pharmacokinetics of TGF-beta 1 in the latent complex were shown to be critically dependent on the degree of sialylation of the complex. The results suggest that formation of latent complexes may switch endogenous TGF-beta 1 from an autocrine/paracrine mode of action to a more endocrine mode involving target organs distant from the site of synthesis.

Browse pages

Click on an image below to see the page. View PDF of the complete article

Advertisement