Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI113729

A juxta-membrane epitope on the human acetylcholine receptor recognized by T cells in myasthenia gravis.

G C Harcourt, N Sommer, J Rothbard, H N Willcox, and J Newsom-Davis

Department of Neurological Science, Royal Free Hospital School of Medicine, London, United Kingdom.

Find articles by Harcourt, G. in: PubMed | Google Scholar

Department of Neurological Science, Royal Free Hospital School of Medicine, London, United Kingdom.

Find articles by Sommer, N. in: PubMed | Google Scholar

Department of Neurological Science, Royal Free Hospital School of Medicine, London, United Kingdom.

Find articles by Rothbard, J. in: PubMed | Google Scholar

Department of Neurological Science, Royal Free Hospital School of Medicine, London, United Kingdom.

Find articles by Willcox, H. in: PubMed | Google Scholar

Department of Neurological Science, Royal Free Hospital School of Medicine, London, United Kingdom.

Find articles by Newsom-Davis, J. in: PubMed | Google Scholar

Published October 1, 1988 - More info

Published in Volume 82, Issue 4 on October 1, 1988
J Clin Invest. 1988;82(4):1295–1300. https://doi.org/10.1172/JCI113729.
© 1988 The American Society for Clinical Investigation
Published October 1, 1988 - Version history
View PDF
Abstract

T cell proliferative responses to synthetic peptides taken from the human nicotinic acetylcholine receptor (AChR) alpha-chain sequence, or to whole AChR purified from electric fish (Torpedo marmorata), have been studied, using blood, thymus, and lymph node cells, from 34 patients with myasthenia gravis (MG) and 17 controls mostly with other neurological diseases. Peptides were selected because they contained amino acid motifs that recur in most defined T cell epitopes. Peptide 257-269 (from the extracellular loop of the AChR alpha-chain between the second and third trans-membrane domains) stimulated cells from six patients and no controls. Peptides from region 125-143 (from the main extracellular 1-210 stretch), which is thought to be an important T cell epitope in rats, provoked responses in 26% of patients and 41% of controls. Two patients responded both to these peptides and to peptide 257-269, thereby implying some heterogeneity of their reacting T cells. Whereas the initial blood T cell samples sometimes responded both to Torpedo AChR and to the 125-143 peptides, T cell lines selected with either antigen subsequently showed no response to the other. This observation suggests that it may be essential to use human AChR sequences for studying truly autoreactive T cells in MG. Finally, no strong association was found between any of the responses to peptides and the HLA types of the responding individuals.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1295
page 1295
icon of scanned page 1296
page 1296
icon of scanned page 1297
page 1297
icon of scanned page 1298
page 1298
icon of scanned page 1299
page 1299
icon of scanned page 1300
page 1300
Version history
  • Version 1 (October 1, 1988): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts