Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111938

Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus.

Ralph A. DeFronzo, Rolf Gunnarsson, Ola Björkman, Maggie Olsson, and John Wahren

Find articles by DeFronzo, R. in: PubMed | Google Scholar

Find articles by Gunnarsson, R. in: PubMed | Google Scholar

Find articles by Björkman, O. in: PubMed | Google Scholar

Find articles by Olsson, M. in: PubMed | Google Scholar

Find articles by Wahren, J. in: PubMed | Google Scholar

Published July 1, 1985 - More info

Published in Volume 76, Issue 1 on July 1, 1985
J Clin Invest. 1985;76(1):149–155. https://doi.org/10.1172/JCI111938.
© 1985 The American Society for Clinical Investigation
Published July 1, 1985 - Version history
View PDF
Abstract

The mechanism(s) and site(s) of the insulin resistance were examined in nine normal-weight noninsulin-dependent diabetic (NIDD) subjects. The euglycemic insulin clamp technique (insulin concentration approximately 100 microU/ml) was employed in combination with hepatic and femoral venous catheterization and measurement of endogenous glucose production using infusion of tritiated glucose. Total body glucose metabolism in the NIDD subjects (4.37 +/- 0.45 mg/kg per min) was 38% (P less than 0.01) lower than in controls (7.04 +/- 0.63 mg/kg per min). Quantitatively, the most important site of the insulin resistance was found to be in peripheral tissues. Leg glucose uptake in the diabetic group was reduced by 45% as compared with that in controls (6.0 +/- 0.2 vs. 11.0 +/- 0.1 mg/kg leg wt per min; P less than 0.01). A strong positive correlation was observed between leg and total body glucose uptake (r = 0.70, P less than 0.001). Assuming that muscle is the primary leg tissue responsible for glucose uptake, it could be estimated that 90 and 87% of the infused glucose was disposed of by peripheral tissues in the control and NIDD subjects, respectively. Net splanchnic glucose balance during insulin stimulation was slightly more positive in the control than in the diabetic subjects (0.31 +/- 0.10 vs. 0.05 +/- 0.19 mg/kg per min; P less than 0.07). The difference (0.26 mg/kg per min) in net splanchnic glucose balance in NIDD represented only 10% of the reduction (2.67 mg/kg per min) in total body glucose uptake in the NIDD group and thus contributed very little to the insulin resistance. The results emphasize the importance of the peripheral tissues in the disposal of infused glucose and indicate that muscle is the most important site of the insulin resistance in NIDD.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 149
page 149
icon of scanned page 150
page 150
icon of scanned page 151
page 151
icon of scanned page 152
page 152
icon of scanned page 153
page 153
icon of scanned page 154
page 154
icon of scanned page 155
page 155
Version history
  • Version 1 (July 1, 1985): Updated with full author names.

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts