Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI111897

Effects of antioxidants on oxidant-induced sister chromatid exchange formation.

A B Weitberg, S A Weitzman, E P Clark, and T P Stossel

Find articles by Weitberg, A. in: PubMed | Google Scholar

Find articles by Weitzman, S. in: PubMed | Google Scholar

Find articles by Clark, E. in: PubMed | Google Scholar

Find articles by Stossel, T. in: PubMed | Google Scholar

Published June 1, 1985 - More info

Published in Volume 75, Issue 6 on June 1, 1985
J Clin Invest. 1985;75(6):1835–1841. https://doi.org/10.1172/JCI111897.
© 1985 The American Society for Clinical Investigation
Published June 1, 1985 - Version history
View PDF
Abstract

Stimulated human phagocytes produce sister chromatid exchanges in cultured mammalian cells by a mechanism involving oxygen metabolites. Experiments were designed to determine whether antioxidants inhibit this process. Superoxide dismutase, catalase, and hydroxyl radical scavengers (benzoate, mannitol) protected target Chinese hamster ovary cells from phagocyte-induced sister chromatid exchanges, implicating the involvement of hydroxyl radicals in this chromosomal damage. N-acetylcysteine and beta-carotene were also protective. alpha-Tocopherol (greater than 5 microM) protected target cells exposed to phagocytes but not to enzymatically generated oxidants when the vitamin was added just before the source of oxygen radicals, suggesting, as reported by others, that the principal action of tocopherol in this setting was to inhibit the release of oxidants from phagocytes. On the other hand, cultivation of target cells with supplemental tocopherol protected them from the toxic effects of the enzymatic oxidant-producing system, indicating a role for membrane-associated free radicals in the mechanism of sister chromatid exchange induction. Low concentrations of sodium selenite (0.1-1.0 microM) protected the target cells. However, higher concentrations (10 microM) of selenite had no effect on oxidant-induced sister chromatid exchange formation, and 0.1 mM selenite increased the number of exchanges. Sodium selenite concentrations of 0.1 mM also decreased the intracellular glutathione concentration of target cells during an oxidant stress, and reducing target cell glutathione concentrations with buthionine sulfoximine increased their sensitivity to oxygen-related chromosomal damage. Therefore, the potentiation of oxygen radical-induced chromosomal damage observed with high concentrations of selenite may result from a decrease in the thiol antioxidant defense systems within the cell. The findings suggest that the hydroxyl radical has an important role in the production of phagocyte-induced cytogenetic injury, membrane-derived intermediates may be involved, depletion of intracellular glutathione renders cells more susceptible to this injury, and supplementation of target cells with antioxidants can protect them from oxygen radical-generated chromosomal injury.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1835
page 1835
icon of scanned page 1836
page 1836
icon of scanned page 1837
page 1837
icon of scanned page 1838
page 1838
icon of scanned page 1839
page 1839
icon of scanned page 1840
page 1840
icon of scanned page 1841
page 1841
Version history
  • Version 1 (June 1, 1985): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts