Article tools
  • View PDF
  • Cite this article
  • E-mail this article
  • Send a letter
  • Information on reuse
  • Standard abbreviations
  • Article usage
Author information
Need help?

Research Article

Increased surface tension favors pulmonary edema formation in anesthetized dogs' lungs.

R K Albert, S Lakshminarayan, J Hildebrandt, W Kirk and J Butler

Published May 1979

The possibility that surface tension may affect the hydrostatic transmural pressure of pulmonary vessels and the development of pulmonary edema was studied in anesthetized, open-chested dogs. Isogravimetric pressure (the static intravascular pressure at which transmural osmotic and hydrostatic pressures are balanced such that net fluid flux is zero and lung weight is constant) was measured in nine animals under three conditions: (a) control, normal surface tension, at an alveolar pressure of 30 cm H2O with the apenic lung at room temperature; (b) after increasing surface tension by cooling and ventilating at a low functional residual capacity, at an alveolar pressure sufficient to produce the same lung volume present during control measurements; and (c) after restoring surface tension by rewarming while holding the lung at a high inflation volume, again at the control lung volume. Lung volumes were established from external dimensions and confirmed +/- 10% by deflation spirometry. The isogravimetric pressure (relative to alveolar pressure) was significantly less with increased surface tension than during either the initial control condition (P less than 0.01), or when the surface tension has been restored (P less than 0.01). Similar changes occurred in each of three additional studies performed with control alveolar pressures of 10 cm H2O. Thus, increased surface tension favors fluid leakage presumably because it increases the microvascular transmural pressure.

Browse pages

Click on an image below to see the page. View PDF of the complete article