Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109186

Prostaglandin Suppression of Mitogen-Stimulated Lymphocytes In Vitro: CHANGES WITH MITOGEN DOSE AND PREINCUBATION

James S. Goodwin, Ronald P. Messner, and Glenn T. Peake

Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131

Find articles by Goodwin, J. in: PubMed | Google Scholar

Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131

Find articles by Messner, R. in: PubMed | Google Scholar

Department of Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131

Find articles by Peake, G. in: PubMed | Google Scholar

Published October 1, 1978 - More info

Published in Volume 62, Issue 4 on October 1, 1978
J Clin Invest. 1978;62(4):753–760. https://doi.org/10.1172/JCI109186.
© 1978 The American Society for Clinical Investigation
Published October 1, 1978 - Version history
View PDF
Abstract

In this study we further characterize the properties of the prostaglandin-producing suppressor cell. Overnight preincubation of peripheral blood mononuclear cells results in an increased response of the cells to phytohemagglutinin or Concanavalin A compared to the response of fresh cells. This increase in mitogen response with preincubation was similar in magnitude to the increase in mitogen response of fresh cells after the addition of indomethacin. The two manipulations were not additive; that is, after preincubation, indomethacin caused much less enhancement of mitogen stimulation of peripheral blood mononuclear cells (100 ± 12% increase before preincubation vs. 12 ± 6% after preincubation; mean±SEM, P < 0.001). Preincubated cells also lose sensitivity to inhibition by exogenous prostaglandin E2. It requires the addition of 100- to > 1,000-fold more exogenous PGE2 to produce comparable inhibition of phytohemagglutinin-stimulated preincubated cells than is required for inhibition of phytohemagglutinin-stimulated fresh cells.

The enhancing effect of indomethacin increases with decreasing doses of phytohemagglutinin. Indomethacin causes a 1,059±134% increase in [3H]thymidine incorporation at the lowest dose of phytohemagglutinin (0.2 μg/ml), and a 4±3% increase at the highest dose (20 μg/ml). This increase in response to indomethacin with a lower dose of phytohemagglutinin is due to increased sensitivity to inhibition by PGE2 at lower mitogen doses.

The prostaglandin-producing suppressor cell assay and the short-lived suppressor cell assay measure over-lapping phenomena. The increased suppressive effect of the prostaglandin-producing suppressor at suboptimal mitogen dose must be taken into account in the interpretation of any study where the response to a range of mitogen doses is studied.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 753
page 753
icon of scanned page 754
page 754
icon of scanned page 755
page 755
icon of scanned page 756
page 756
icon of scanned page 757
page 757
icon of scanned page 758
page 758
icon of scanned page 759
page 759
icon of scanned page 760
page 760
Version history
  • Version 1 (October 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts