Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108465

The mechanism whereby bile acid micelles increase the rate of fatty acid and cholesterol uptake into the intestinal mucosal cell.

H Westergaard and J M Dietschy

Find articles by Westergaard, H. in: PubMed | Google Scholar

Find articles by Dietschy, J. in: PubMed | Google Scholar

Published July 1, 1976 - More info

Published in Volume 58, Issue 1 on July 1, 1976
J Clin Invest. 1976;58(1):97–108. https://doi.org/10.1172/JCI108465.
© 1976 The American Society for Clinical Investigation
Published July 1, 1976 - Version history
View PDF
Abstract

Studies were undertaken to define the mechanism whereby bile acid facilitates fatty acid and cholesterol uptake into the intestinal mucosal cell. Initial studies showed that the rate of uptake (Jd) of several fatty acids and cholesterol was a linear function of the concentration of these molecules in the bulk phase if the concentration of bile acid was kept constant. In contrast, Jd decreased markedly when the concentration of bile acid was increased relative to that of the probe molecule but remained essentially constant when the concentration of both the bile acid and probe molecule was increased in parallel. In other studies Jd for lauric acid measured from solutions containing either 0 or 20 mM taurodeoxycholate and saturated with the fatty acid equaled 79.8+/-5.2 and 120.8+/-9.4 nmol.min(-1).100 mg(-1), respectively: after correction for unstirred layer resistance, however, the former value equaled 113.5+/-7.1 nmol.min(-1).100 mg(-1). Maximum values of Jd for the saturated fatty acids with 12, 16, and 18 carbons equaled 120.8+/-9.4, 24.1+/-3.2, and 13.6+/-1.1 nmol.min(-1).100 mg(-1), respectively. These values essentially equaled those derived by multiplying the maximum solubility times the passive permeability coefficients appropriate for each of these compounds. The theoretical equations were then derived that define the expected behavior of Jd for the various lipids under these different experimental circumstances where the mechanism of absorption was assumed to occur either by uptake of the whole micelle, during interaction of the micelle with an infinite number of sites on the microvillus membrane or through a monomer phase of lipid molecules in equilibrium with the micelle. The experimental results were consistent both qualitatively and quantitatively with the third model indicating that the principle role of the micelle in facilitating lipid absorption is to overcome unstirred layer resistance while the actual process of fatty acid and cholesterol absorption occurs through a monomer phase in equilibrium with the micelle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 97
page 97
icon of scanned page 98
page 98
icon of scanned page 99
page 99
icon of scanned page 100
page 100
icon of scanned page 101
page 101
icon of scanned page 102
page 102
icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
Version history
  • Version 1 (July 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts