Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107348

Interaction of Intraleukocytic Bacteria and Antibiotics

Gerald L. Mandell

1Division of Infectious Diseases, Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22901

Find articles by Mandell, G. in: PubMed | Google Scholar

Published July 1, 1973 - More info

Published in Volume 52, Issue 7 on July 1, 1973
J Clin Invest. 1973;52(7):1673–1679. https://doi.org/10.1172/JCI107348.
© 1973 The American Society for Clinical Investigation
Published July 1, 1973 - Version history
View PDF
Abstract

Bacteria that survive inside polymorphonuclear neutrophils (PMN) following phagocytosis are protected from the bactericidal action of most antibiotics. Two possible explanations are altered metabolism by intraleukocytic bacteria or failure of antibiotics to enter the phagosome. The oxygen consumption of intraleukocytic and extraleukocytic bacteria was measured as an index of bacterial metabolism. PMN respiration and bactericidal activity were suppressed with large doses of hydrocortisone and extraleukocytic bacterial oxygen consumption was abolished by the addition of lysostaphin. Intraleukocytic bacterial continued to consume oxygen suggesting that surviving ingested micro-organisms are metabolically active. Neither penicillin (which cannot kill intraleukocytic bacteria) nor rifampin (which can kill intraleukocytic bacteria) was bactericidal for staphylococci at 5°C. Thus, rifampin is not uniquely able to kill “resting” bacteria.

Intraleukocytic or extraleukocytic Staphylococcus aurens were incubated with [benzyl-14C]penicillin for 2 h at 37°C. Live intraleukocytic bacteria bound only 13% as much penicillin as live bacteria incubated with killed PMN. To measure the penetration of antibiotics into PMN, [14C]rifampin and [14C]penicillin were measured in leukocyte pellets and in the supernatant fluid. The total water space in the pellets was quantitated using tritium water and the extracellular water space was measured using Na235SO4. All penicillin associated with the cell pellet could be accounted for in extracellular water. Thus penicillin was completely excluded from the leukocytes. Rifampin was concentrated in the cell pellet 2.2 times when compared with the supernatant concentration.

These studies suggest that a likely explanation for the survival of phagocytized bacteria in the presence of high concentrations of most antibiotics is the inability of the antibiotic to enter the phagocyte. Rifampin, which is highly lipid soluble, can enter leukocytes and kill intracellular bacteria.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1673
page 1673
icon of scanned page 1674
page 1674
icon of scanned page 1675
page 1675
icon of scanned page 1676
page 1676
icon of scanned page 1677
page 1677
icon of scanned page 1678
page 1678
icon of scanned page 1679
page 1679
Version history
  • Version 1 (July 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts