Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107334

Evidence for a Common, Saturable, Triglyceride Removal Mechanism for Chylomicrons and Very Low Density Lipoproteins in Man

John D. Brunzell, william R. Hazzard, Daniel Porte Jr., and Edwin L. Bierman

1Department of Medicine, University of Washington School of Medicine and the Veterans Administration Hospital, Seattle, Washington 98108

Find articles by Brunzell, J. in: PubMed | Google Scholar

1Department of Medicine, University of Washington School of Medicine and the Veterans Administration Hospital, Seattle, Washington 98108

Find articles by Hazzard, w. in: PubMed | Google Scholar

1Department of Medicine, University of Washington School of Medicine and the Veterans Administration Hospital, Seattle, Washington 98108

Find articles by Porte, D. in: PubMed | Google Scholar

1Department of Medicine, University of Washington School of Medicine and the Veterans Administration Hospital, Seattle, Washington 98108

Find articles by Bierman, E. in: PubMed | Google Scholar

Published July 1, 1973 - More info

Published in Volume 52, Issue 7 on July 1, 1973
J Clin Invest. 1973;52(7):1578–1585. https://doi.org/10.1172/JCI107334.
© 1973 The American Society for Clinical Investigation
Published July 1, 1973 - Version history
View PDF
Abstract

Hypertriglyceridemic subjects were fed diets in which dietary fat calories were held constant, but carbohydrate calories were varied. Three subjects with fasting chylomicronemia (Type V) were given less carbohydrate and four subjects without fasting chylomicronemia (Type IV) were fed diets with more calories as carbohydrate. The restricted carbohydrate intake led to disappearance of chylomicronemia in those subjects who had chylomicronemia on a normal diet (Type V to IV). In those subjects without chylomicronemia, chylomicronemia appeared in response to increased carbohydrate intake (Type IV to V). Thus chylomicron concentrations in plasma were altered even though fat intake and presumably chylomicron input into plasma was kept constant. These findings provide evidence for saturation of chylomicron removal mechanisms by alteration of endogenous triglyceride-rich lipoprotein concentrations. They suggest that chylomicrons compete with very low density lipoproteins for similar removal mechanisms. The relationship between endogenous triglyceride concentration and the lipolytic activity in plasma following heparin was then evaluated with the use of long-term heparin infusions to release and maintain lipolytic activity in the circulation. 10 subjects were placed on fatfree diets to remove circulating dietary fat. The plasma lipolytic rate during the heparin infusion was measured consecutively on different days in individuals whose triglyceride concentrations were varied by either increasing or decreasing calories. The lipolytic rate was curvilinearly related to the plasma triglyceride concentrations. This curvilinear relationship followed Michaelis-Menton saturation kinetics over a wide range of triglyceride concentrations on fat-free, high-carbohydrate diets, in multiple studies in a group of individuals. These studies suggest that endogenous and exogenous triglyceride compete for a common, saturable, plasma triglyceride removal system related to lipoprotein lipase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1578
page 1578
icon of scanned page 1579
page 1579
icon of scanned page 1580
page 1580
icon of scanned page 1581
page 1581
icon of scanned page 1582
page 1582
icon of scanned page 1583
page 1583
icon of scanned page 1584
page 1584
icon of scanned page 1585
page 1585
Version history
  • Version 1 (July 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts