Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105714

Characterization of the responses of circulating glucagon-like immunoreactivity to intraduodenal and intravenous administration of glucose

Roger H. Unger, Akira Ohneda, Isabel Valverde, A. M. Eisentraut, and John Exton

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Veterans Hospital, Dallas, Texas

Department of Physiology, Vanderbilt University, Nashville, Tennessee

Find articles by Unger, R. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Veterans Hospital, Dallas, Texas

Department of Physiology, Vanderbilt University, Nashville, Tennessee

Find articles by Ohneda, A. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Veterans Hospital, Dallas, Texas

Department of Physiology, Vanderbilt University, Nashville, Tennessee

Find articles by Valverde, I. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Veterans Hospital, Dallas, Texas

Department of Physiology, Vanderbilt University, Nashville, Tennessee

Find articles by Eisentraut, A. in: PubMed | Google Scholar

Department of Internal Medicine, The University of Texas Southwestern Medical School at Dallas, Veterans Hospital, Dallas, Texas

Department of Physiology, Vanderbilt University, Nashville, Tennessee

Find articles by Exton, J. in: PubMed | Google Scholar

Published January 1, 1968 - More info

Published in Volume 47, Issue 1 on January 1, 1968
J Clin Invest. 1968;47(1):48–65. https://doi.org/10.1172/JCI105714.
© 1968 The American Society for Clinical Investigation
Published January 1, 1968 - Version history
View PDF
Abstract

The effects of ingested and infused glucose upon circulating glucagon-like immunoreactivity (GLI) were compared in 14 triply catheterized conscious dogs. Within 60 min after the intraduodenal administration of 2 g/kg of glucose, the mean level of glucagon-like immunoreactivity in the vena caval plasma more than doubled, whereas after intravenous infusion of the same dose over a 90 min period no change in the mean vena caval level was observed; during glucose infusion mean glucagon-like immunoreactivity in the pancreatic venous effluent declined, suggesting that hyperglycemia suppresses rather than stimulates pancreatic glucagon secretion.

To determine if the rise in glucagon-like immunoreactivity that occurs during glucose absorption was of pancreatic origin, the effect of pancreatectomy performed 1 hr after the intraduodenal administration of glucose was determined. Although circulating insulin disappeared after resection of the pancreas, the level of glucagon-like immunoreactivity continued to rise, establishing its extrapancreatic origin. In other experiments, measurements of Glucagon-like immunoreactivity in plasma obtained simultaneously from pancreaticoduodenal and mesenteric veins and from the vena cava revealed the increment after intraduodenal glucose loading to be greatest in the mesenteric vein in 8 of 12 experiments, favoring the gut as the likely source of the rise.

To characterize gut glucagon-like immunoreactivity, acid-alcohol extracts of canine jejunum were compared with similar glucagon-containing extracts of canine pancreas with respect to certain physical and biological properties. On a G-25 Sephadex column the elution volume of the jejunal immunoreactivity was found to be smaller than that of glucagon, which suggested a molecular size at least twice that of pancreatic glucagon. Furthermore, the in vivo and in vitro biological activities of the eluates containing jejunal glucagon-like immunoreactivity appeared to differ from those of eluates containing pancreatic glucagon. The jejunal material lacked hyperglycemic activity when injected endoportally into dogs, was devoid of glycogenolytic activity in the isolated perfused rat liver, and did not increase hepatic 3′,5′ cyclic adenylate in the perfused liver; however, like glucagon it appeared to stimulate insulin release. It seems quite clear the material in intestinal extracts either is a different substance or a different form from that of true pancreatic glucagon, although it crossreacts in the radioimmunoassay with antibodies to glucagon.

It is concluded, (a) that hyperglycemia does not stimulate and probably suppresses the secretion of pancreatic glucagon; (b) that during intestinal absorption of glucose, a rise in glucagon-like immunoreactivity occurs; (c) this immunoreactivity is derived from an extrapancreatic site, probably the gut; (d) that the glucagon-like immunoreactivity extractable from jejunum is not the same as pancreatic glucagon but is a larger molecule devoid of hyperglycemic and glycogenolytic activity, a cross-reactant in radioimmunoassay for glucagon; and (e) that the eluate in which jejunal immunoreactivity is contained can stimulate insulin release in conscious dogs.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 48
page 48
icon of scanned page 49
page 49
icon of scanned page 50
page 50
icon of scanned page 51
page 51
icon of scanned page 52
page 52
icon of scanned page 53
page 53
icon of scanned page 54
page 54
icon of scanned page 55
page 55
icon of scanned page 56
page 56
icon of scanned page 57
page 57
icon of scanned page 58
page 58
icon of scanned page 59
page 59
icon of scanned page 60
page 60
icon of scanned page 61
page 61
icon of scanned page 62
page 62
icon of scanned page 63
page 63
icon of scanned page 64
page 64
icon of scanned page 65
page 65
Version history
  • Version 1 (January 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts