Review

Abstract

The mapping of disease genes to specific loci has received a great deal of attention in the last decade, and many advances in therapeutics have resulted. Here we review family-based and population-based methods for association analysis. We define the factors that determine statistical power and show how study design and analysis should be designed to maximize the probability of localizing disease genes.

Authors

Derek Gordon, Stephen J. Finch

×

Abstract

Recent advances in statistical methods and genomic technologies have ushered in a new era in mapping clinically important quantitative traits. However, many refinements and novel statistical approaches are required to enable greater successes in this mapping. The possible impact of recent findings pertaining to the structure of the human genome on efforts to map quantitative traits is yet unclear.

Authors

Partha P. Majumder, Saurabh Ghosh

×

Abstract

The causal chain between a gene and its effect on disease susceptibility cannot be understood until the effect has been localized in the DNA sequence. Recently, polymorphisms incorporated in the HapMap Project have made linkage disequilibrium (LD) the most powerful tool for localization. The genetics of LD, the maps and databases that it provides, and their use for association mapping, as well as alternative methods for gene localization, are briefly described.

Authors

Newton E. Morton

×

Abstract

Conventional genetic analysis focuses on the genes that account for specific phenotypes, while traditional epidemiology is more concerned with the environmental causes and risk factors related to traits. Genetic epidemiology is an alliance of the 2 fields that focuses on both genetics, including allelic variants in different populations, and environment, in order to explain exactly how genes convey effects in different environmental contexts and to arrive at a more complete comprehension of the etiology of complex traits. In this review, we discuss the epidemiology of diabetes and the current understanding of the genetic bases of obesity and diabetes and provide suggestions for accelerated accumulation of clinically useful genetic information.

Authors

M. Alan Permutt, Jonathon Wasson, Nancy Cox

×

Abstract

Genetic epidemiological studies suggest that individual variation in susceptibility to schizophrenia is largely genetic, reflecting alleles of moderate to small effect in multiple genes. Molecular genetic studies have identified a number of potential regions of linkage and 2 associated chromosomal abnormalities, and accumulating evidence favors several positional candidate genes. These findings are grounds for optimism that insight into genetic factors associated with schizophrenia will help further our understanding of this disease and contribute to the development of new ways to treat it.

Authors

George Kirov, Michael C. O’Donovan, Michael J. Owen

×

Abstract

Gene defects play a major role in the pathogenesis of degenerative disorders of the nervous system. In fact, it has been the very knowledge gained from genetic studies that has allowed the elucidation of the molecular mechanisms underlying the etiology and pathogenesis of many neurodegenerative disorders. In this review, we discuss the current status of genetic epidemiology of the most common neurodegenerative diseases: Alzheimer disease, Parkinson disease, Lewy body dementia, frontotemporal dementia, amyotrophic lateral sclerosis, Huntington disease, and prion diseases, with a particular focus on similarities and differences among these syndromes.

Authors

Lars Bertram, Rudolph E. Tanzi

×

Abstract

The remarkable achievements in human genetics over the years have been due to technological advances in gene mapping and in statistical methods that relate genetic variants to disease. Nearly every Mendelian genetic disorder has now been mapped to a specific gene or set of genes, but these discoveries have been limited to high-risk, variant alleles that segregate in rare families. With a working draft of the human genome now in hand, the availability of high-throughput genotyping, a plethora of genetic markers, and the development of new analytical methods, scientists are now turning their attention to common complex disorders such as diabetes, obesity, hypertension, and Alzheimer disease. In this issue, the JCI provides readers with a series dedicated to complex genetic disorders, offering a view of genetic medicine in the 21st century.

Authors

Richard Mayeux

×

Abstract

Over the last decade, an abundance of evidence has emerged demonstrating a close link between metabolism and immunity. It is now clear that obesity is associated with a state of chronic low-level inflammation. In this article, we discuss the molecular and cellular underpinnings of obesity-induced inflammation and the signaling pathways at the intersection of metabolism and inflammation that contribute to diabetes. We also consider mechanisms through which the inflammatory response may be initiated and discuss the reasons for the inflammatory response in obesity. We put forth for consideration some hypotheses regarding important unanswered questions in the field and suggest a model for the integration of inflammatory and metabolic pathways in metabolic disease.

Authors

Kathryn E. Wellen, Gökhan S. Hotamisligil

×

Abstract

For approximately 80 years following Alzheimer’s description of the disease that bears his name, a gulf divided researchers who believed that extracellular deposits of the amyloid β (Aβ) peptide were pathogenic from those who believed that the deposits were secondary detritus. Since 1990, the discoveries of missense mutations in the Aβ peptide precursor (APP) and the APP-cleaving enzyme presenilin 1 (PS1) have enabled much progress in understanding the molecular, cellular, and tissue pathology of the aggregates that accumulate in the interstices of the brains of patients with autosomal dominant familial Alzheimer disease (AD). Clarification of the molecular basis of common forms of AD has been more elusive. The central questions in common AD focus on whether cerebral and cerebrovascular Aβ accumulation is (a) a final neurotoxic pathway, common to all forms of AD; (b) a toxic by-product of an independent primary metabolic lesion that, by itself, is also neurotoxic; or (c) an inert by-product of an independent primary neurotoxic reaction. Antiamyloid medications are entering clinical trials so that researchers can evaluate whether abolition of cerebral amyloidosis can mitigate, treat, or prevent the dementia associated with common forms of AD. Successful development of antiamyloid medications is critical for elucidating the role of Aβ in common AD.

Authors

Sam Gandy

×

Abstract

Cutaneous T cell lymphomas (CTCLs) are a heterogenous group of lymphoproliferative disorders caused by clonally derived, skin-invasive T cells. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of CTCLs and are characterized by malignant CD4+/CLA+/CCR4+ T cells that also lack the usual T cell surface markers CD7 and/or CD26. As MF/SS advances, the clonal dominance of the malignant cells results in the expression of predominantly Th2 cytokines, progressive immune dysregulation in patients, and further tumor cell growth. This review summarizes recent insights into the pathogenesis and immunobiology of MF/SS and how these have shaped current therapeutic approaches, in particular the growing emphasis on enhancement of host antitumor immune responses as the key to successful therapy.

Authors

Ellen J. Kim, Stephen Hess, Stephen K. Richardson, Sara Newton, Louise C. Showe, Bernice M. Benoit, Ravi Ubriani, Carmela C. Vittorio, Jacqueline M. Junkins-Hopkins, Maria Wysocka, Alain H. Rook

×

No posts were found with this tag.