Review

Abstract

HDL metabolism represents a major target for the development of therapies intended to reduce the risk of atherosclerotic cardiovascular disease. HDL metabolism is complex and involves dissociation of HDL apolipoprotein and HDL cholesterol metabolism. Advances in our understanding of the molecular regulation of HDL metabolism, macrophage cholesterol efflux, and HDL function will lead to a variety of novel therapeutics.

Authors

Daniel J. Rader

×

Abstract

Myasthenia gravis (MG) is an autoimmune syndrome caused by the failure of neuromuscular transmission, which results from the binding of autoantibodies to proteins involved in signaling at the neuromuscular junction (NMJ). These proteins include the nicotinic AChR or, less frequently, a muscle-specific tyrosine kinase (MuSK) involved in AChR clustering. Much is known about the mechanisms that maintain self tolerance and modulate anti-AChR Ab synthesis, AChR clustering, and AChR function as well as those that cause neuromuscular transmission failure upon Ab binding. This insight has led to the development of improved diagnostic methods and to the design of specific immunosuppressive or immunomodulatory treatments.

Authors

Bianca M. Conti-Fine, Monica Milani, Henry J. Kaminski

×

Abstract

The deiodinases activate or inactivate thyroid hormone, and their importance in thyroid hormone homeostasis has become increasingly clear with the availability of deiodinase-deficient animals. At the same time, heightened interest in the field has been generated following the discovery that the type 2 deiodinase can be an important component in both the Hedgehog signaling pathway and the G protein–coupled bile acid receptor 1–mediated (GPBAR1-mediated) signaling cascade. The discovery of these new roles for the deiodinases indicates that tissue-specific deiodination plays a much broader role than once thought, extending into the realms of developmental biology and metabolism.

Authors

Antonio C. Bianco, Brian W. Kim

×

Abstract

The epidemic scourge of rickets in the 19th century was caused by vitamin D deficiency due to inadequate sun exposure and resulted in growth retardation, muscle weakness, skeletal deformities, hypocalcemia, tetany, and seizures. The encouragement of sensible sun exposure and the fortification of milk with vitamin D resulted in almost complete eradication of the disease. Vitamin D (where D represents D2 or D3) is biologically inert and metabolized in the liver to 25-hydroxyvitamin D [25(OH)D], the major circulating form of vitamin D that is used to determine vitamin D status. 25(OH)D is activated in the kidneys to 1,25-dihydroxyvitamin D [1,25(OH)2D], which regulates calcium, phosphorus, and bone metabolism. Vitamin D deficiency has again become an epidemic in children, and rickets has become a global health issue. In addition to vitamin D deficiency, calcium deficiency and acquired and inherited disorders of vitamin D, calcium, and phosphorus metabolism cause rickets. This review summarizes the role of vitamin D in the prevention of rickets and its importance in the overall health and welfare of infants and children.

Authors

Michael F. Holick

×

Abstract

Parkinson disease (PD) is a relatively common disorder of the nervous system that afflicts patients later in life with tremor, slowness of movement, gait instability, and rigidity. Treatment of these cardinal features of the disease is a success story of modern science and medicine, as a great deal of disability can be alleviated through the pharmacological correction of brain dopamine deficiency. Unfortunately these therapies only provide temporary, though significant, relief from early symptoms and do not halt disease progression. In addition, pathological changes outside of the motor system leading to cognitive, autonomic, and psychiatric symptoms are not sufficiently treated by current therapies. Much as the discovery of dopamine deficiency led to powerful treatments for motor symptoms, recent discoveries concerning the role of specific genes in PD pathology will lead to the next revolution in disease therapy. Understanding why and how susceptible cells in motor and nonmotor regions of the brain die in PD is the first step toward preventing this cell death and curing or slowing the disease. In this review we discuss recent discoveries in the fields of diagnosis and treatment of PD and focus on how a better understanding of disease mechanisms gained through the study of monogenetic forms of PD has provided novel therapeutic targets.

Authors

Joseph M. Savitt, Valina L. Dawson, Ted M. Dawson

×

Abstract

Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel.

Authors

Clay F. Semenkovich

×

Abstract

Recent data underscore the importance of intertissue communication in the maintenance of normal glucose homeostasis. Important signals are conveyed by hormones, cytokines, and fuel substrates and are sensed through a variety of cellular mechanisms. The ability of tissues to sense and adapt to changes in metabolic status and fuel availability is altered in insulin-resistant states including type 2 diabetes. Here we review the roles of glucose and its metabolites as signaling molecules and the diverse physiologic mechanisms for glucose sensing.

Authors

Mark A. Herman, Barbara B. Kahn

×

Abstract

AMP-activated protein kinase (AMPK) is an energy sensor that regulates cellular metabolism. When activated by a deficit in nutrient status, AMPK stimulates glucose uptake and lipid oxidation to produce energy, while turning off energy-consuming processes including glucose and lipid production to restore energy balance. AMPK controls whole-body glucose homeostasis by regulating metabolism in multiple peripheral tissues, such as skeletal muscle, liver, adipose tissues, and pancreatic β cells — key tissues in the pathogenesis of type 2 diabetes. By responding to diverse hormonal signals including leptin and adiponectin, AMPK serves as an intertissue signal integrator among peripheral tissues, as well as the hypothalamus, in the control of whole-body energy balance.

Authors

Yun Chau Long, Juleen R. Zierath

×

Abstract

Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin’s role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body’s energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

Authors

Leona Plum, Bengt F. Belgardt, Jens C. Brüning

×

Abstract

Over a hundred years ago, high doses of salicylates were shown to lower glucose levels in diabetic patients. This should have been an important clue to link inflammation to the pathogenesis of type 2 diabetes (T2D), but the antihyperglycemic and antiinflammatory effects of salicylates were not connected to the pathogenesis of insulin resistance until recently. Together with the discovery of an important role for tissue macrophages, these new findings are helping to reshape thinking about how obesity increases the risk for developing T2D and the metabolic syndrome. The evolving concept of insulin resistance and T2D as having immunological components and an improving picture of how inflammation modulates metabolism provide new opportunities for using antiinflammatory strategies to correct the metabolic consequences of excess adiposity.

Authors

Steven E. Shoelson, Jongsoon Lee, Allison B. Goldfine

×

No posts were found with this tag.