Concise Communication

Abstract

A considerable fraction of B cells recognize SARS-CoV-2 with germline-encoded elements of their B cell receptor resulting in the production of neutralizing and non-neutralizing antibodies. We found that antibody sequences from different discovery cohorts shared biochemical properties and could be retrieved across validation cohorts confirming the stereotyped character of this naive response in COVID-19. While neutralizing antibody sequences were found independently of disease severity in line with serological data, individual non-neutralizing antibody sequences were associated with fatal clinical courses suggesting detrimental effects of these antibodies. We mined 200 immune repertoires of healthy individuals and 500 of patients with blood or solid cancers - all acquired prior to the pandemic - for SARS-CoV-2 antibody sequences. While the largely unmutated B cell rearrangements occurred in a substantial fraction of immune repertoires from young and healthy individuals, these sequences were less likely found in individuals over 60 years of age and in cancer. This reflects B cell repertoire restriction in aging and cancer and may to a certain extent explain the different clinical COVID-19 courses observed in these risk groups. Future studies will have to address if this stereotyped B cell response to SARS-CoV-2 emerging from unmutated antibody rearrangements will create long-lived memory.

Authors

Lisa Paschold, Donjete Simnica, Edith Willscher, Maria J.G.T. Vehreschild, Jochen Dutzmann, Daniel G. Sedding, Christoph Schultheiß, Mascha Binder

×

Abstract

Four different endemic coronaviruses (eCoVs) are etiologic agents for the seasonal “common cold,” and these eCoVs share extensive sequence homology with human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Here, we show that individuals with as compared to without a relatively recent documented eCoV were tested at greater frequency for respiratory infections but had similar rate of SARS-CoV-2 acquisition. Importantly, the patients with a previously detected eCoV had less severe coronavirus disease-2019 (COVID-19) illness. Our observations suggest that pre-existing immune responses against endemic human coronaviruses can mitigate disease manifestations from SARS-CoV-2 infection.

Authors

Manish Sagar, Katherine Reifler, Michael Rossi, Nancy S. Miller, Pranay Sinha, Laura White, Joseph P. Mizgerd

×

Abstract

Desmoglein 3 chimeric autoantibody receptor T-cells (DSG3-CAART) expressing the pemphigus vulgaris (PV) autoantigen DSG3, fused to CD137-CD3ζ signaling domains, represent a precision cellular immunotherapy approach for antigen-specific B-cell depletion. Here, we present definitive preclinical studies enabling a first-in-human trial of DSG3-CAART for mucosal PV. DSG3-CAART specifically lysed human anti-DSG3 B-cells from PV patients and demonstrated activity consistent with a threshold dose in vivo, resulting in decreased target cell burden, decreased serum and tissue-bound autoantibodies, and increased DSG3-CAART engraftment. In a PV active immune model with physiologic anti-DSG3 IgG levels, DSG3-CAART inhibited antibody responses against pathogenic DSG3 epitopes and autoantibody binding to epithelial tissues, leading to clinical and histologic resolution of blisters. DSG3 autoantibodies stimulate DSG3-CAART IFNγ secretion and homotypic clustering, consistent with an activated phenotype. Toxicology screens using primary human cells and high-throughput membrane proteome arrays did not identify off-target cytotoxic interactions. These preclinical data guided the trial design for DSG3-CAART and may help inform CAART preclinical development for other antibody-mediated diseases.

Authors

Jinmin Lee, Daniel K. Lundgren, Xuming Mao, Silvio Manfredo-Vieira, Selene Nunez-Cruz, Erik F. Williams, Charles-Antoine Assenmacher, Enrico Radaelli, Sangwook Oh, Baomei Wang, Christoph T. Ellebrecht, Joseph A. Fraietta, Michael C. Miloneǂ, Aimee S. Payne

×

Abstract

Particulate matter < 2.5 micrometers (PM2.5) air pollution is the world’s leading environmental risk factor contributing to mortality through cardiometabolic pathways. In this study, we modeled early life exposure using chow-fed C57BL/6J male mice, exposed to real-world inhaled concentrated PM2.5 (~10 times ambient levels / ~60-120ug/m3) or filtered air over 14 weeks. We investigated PM2.5 effects on phenotype, transcriptome and chromatin accessibility, compared the effects with a prototypical high-fat diet (HFD) stimulus, and examined cessation of exposure on reversibility of phenotype. Exposure to PM2.5 impaired glucose and insulin tolerance, reduced energy expenditure and 18FDG-PET uptake in brown adipose tissue. Multiple differentially expressed gene (DEG) clusters in pathways involving metabolism and circadian rhythm were noted in insulin responsive tissues. Although the magnitude of transcriptional change seen with PM2.5 was lower than HFD, the degree of alteration in chromatin accessibility after PM2.5 exposure was significant. A novel chromatin remodeler SMARCA5 (SWI/SNF complex) was regulated in response to PM2.5 with cessation of exposure associated with reversal of insulin resistance, restoration of chromatin accessibility/nucleosome positioning near transcription start sites (TSS) and exposure induced changes in the transcriptome including SMARCA5, indicating pliable epigenetic control mechanisms following exposure cessation.

Authors

Sanjay Rajagopalan, Bongsoo Park, Rengasamy Palanivel, Vinesh Vinayachandran, Jeffrey A. Deiuliis, Roopesh Singh Gangwar, Lopa M. Das, Jinhu Yin, Youngshim Choi, Sadeer Al-Kindi, Mukesh K. Jain, Kasper D. Hansen, Shyam Biswal

×

Abstract

Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyper-inflammation and thrombotic microangiopathy, thereby increasing COVID-19 mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies and NETs/human aortic endothelial cell (HAEC) co-cultures. Increased plasma levels of NETs, tissue factor (TF) activity and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAEC. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against SARS-CoV-2 that exploit complement or NETosis inhibition.

Authors

Panagiotis Skendros, Alexandros Mitsios, Akrivi Chrysanthopoulou, Dimitrios C. Mastellos, Simeon Metallidis, Petros Rafailidis, Maria Ntinopoulou, Eleni Sertaridou, Victoria Tsironidou, Christina Tsigalou, Maria G. Tektonidou, Theocharis Konstantinidis, Charalampos Papagoras, Ioannis Mitroulis, Georgios Germanidis, John D. Lambris, Konstantinos Ritis

×

Abstract

Desmoplasia describes the deposition of extensive extracellular matrix and defines primary pancreatic ductal adenocarcinoma (PDA). The acellular component of this stroma has been implicated in PDA pathogenesis and is being targeted therapeutically in clinical trials. By analyzing the stromal content of PDA samples from numerous annotated PDA data sets and correlating stromal content with both anatomic site and clinical outcome, we found PDA metastases in the liver, the primary cause of mortality to have less stroma, have higher tumor cellularity than primary tumors. Experimentally manipulating stromal matrix with an anti– lysyl oxidase like-2 (anti-LOXL2) antibody in syngeneic orthotopic PDA mouse models significantly decreased matrix content, led to lower tissue stiffness, lower contrast retention on computed tomography, and accelerated tumor growth, resulting in diminished overall survival. These studies suggest an important protective role of stroma in PDA and urge caution in clinically deploying stromal depletion strategies.

Authors

Honglin Jiang, Robert J. Torphy, Katja Steiger, Henry Hongo, Alexa J. Ritchie, Mark Kriegsmann, David Horst, Sarah E. Umetsu, Nancy M. Joseph, Kimberly McGregor, Michael J. Pishvaian, Edik M. Blais, Brian Lu, Mingyu Li, Michael Hollingsworth, Connor Stashko, Keith Volmar, Jen Jen Yeh, Valerie M. Weaver, Zhen J. Wang, Margaret A. Tempero, Wilko Weichert, Eric A. Collisson

×

Abstract

Although broadly protective, stem-targeted Abs against the influenza A virus hemagglutinin (HA) have been well studied, very limited information is available on Abs that broadly recognize the head domain. We determined the crystal structure of the HA protein of the avian H7N9 influenza virus in complex with a pan-H7, non-neutralizing, protective human Ab. The structure revealed a B cell epitope in the HA head domain trimer interface (TI). This discovery of a second major protective TI epitope supports a model in which uncleaved HA trimers exist on the surface of infected cells in a highly dynamic state that exposes hidden HA head domain features.

Authors

Jinhui Dong, Iuliia Gilchuk, Sheng Li, Ryan Irving, Matthew T. Goff, Hannah L. Turner, Andrew B. Ward, Robert H. Carnahan, James E. Crowe Jr.

×

Abstract

Peripheral neurotoxicity is a debilitating toxicity that afflicts up to 90% of patients with colorectal cancer receiving oxaliplatin-containing therapy. Although emerging evidence has highlighted the importance of various solute carriers to the toxicity of anticancer drugs, the contribution of these proteins to oxaliplatin-induced peripheral neurotoxicity remains controversial. Among candidate transporters investigated in genetically-engineered mouse models, we provide evidence for a critical role of the organic cation transporter 2 (OCT2) in satellite glial cells to oxaliplatin-induced neurotoxicity, and demonstrate that targeting OCT2 using genetic and pharmacological approaches ameliorates acute and chronic forms of neurotoxicity. The relevance of this transport system was verified in transporter-deficient rats as a secondary model organism, and translational significance of preventative strategies was demonstrated in preclinical models of colorectal cancer. These studies suggest that pharmacological targeting of OCT2 could be exploited to afford neuroprotection in cancer patients requiring treatment with oxaliplatin.

Authors

Kevin M. Huang, Alix F. Leblanc, Muhammad Erfan Uddin, Ji Young Kim, Mingqing Chen, Eric D. Eisenmann, Alice Gibson, Yang Li, Kristen W. Hong, Duncan DiGiacomo, Sherry Huinan Xia, Paola Alberti, Alessia Chiorazzi, Stephen N. Housley, Timothy C. Cope, Jason A. Sprowl, Jing Wang, Charles L. Loprinzi, Anne Noonan, Maryam Lustberg, Guido Cavaletti, Navjotsingh Pabla, Shuiying Hu, Alex Sparreboom

×

Abstract

The microbiome provides resistance to infection. However, mechanisms for this are poorly understood. Here we demonstrate in a murine model that colonization with the intestinal bacterium Clostridium scindens provided protection from Entamoeba histolytica colitis via innate immunity. Introduction of C. scindens into the gut microbiota epigenetically altered and expanded bone marrow granulocyte-monocyte-progenitors (GMPs) and resulted in increased intestinal neutrophils with subsequent challenge with E. histolytica. Introduction of C. scindens alone was sufficient to expand GMPs in gnotobiotic mice. Adoptive transfer of bone-marrow from C. scindens colonized-mice into naïve-mice protected against amebic colitis and increased intestinal neutrophils. Children without E. histolytica diarrhea also had a higher abundance of Lachnoclostridia. Because of the known ability of the Lachnoclostridia C. scindens to metabolize the bile salt cholate, we measured deoxycholate and discovered that it was increased in the sera of C. scindens colonized specific pathogen free and gnotobiotic mice, as well as in children protected from amebiasis. Administration of deoxycholate alone (in the absence of C. scindens) increased GMPs and provided protection from amebiasis. We have discovered a mechanism by which C. scindens and the microbially-metabolized bile salt deoxycholic acid alter hematopoietic precursors and provide innate protection from later infection with Entamoeba histolytica.

Authors

Stacey L. Burgess, Jhansi L. Leslie, Md. Jashim Uddin, David Noah Oakland, Carol A. Gilchrist, G. Brett Moreau, Koji Watanabe, Mahmoud M. Saleh, Morgan Simpson, Brandon A. Thompson, David T. Auble, Stephen D. Turner, Natasa Giallourou, Jonathan Swann, Zhen Pu, Jennie Z. Ma, Rashidul Haque, William A. Petri, Jr.

×

Abstract

Molecular mechanisms governing the development of mammalian cochlea, the hearing organ, remain largely unknown. Through genome sequencing in three subjects from two families with non-syndromic cochlear aplasia, we identified homozygous 221 KB and 338 KB deletions in a non-coding region on chromosome 8 with an ~200 KB overlapping section. Genomic location of the overlapping deleted region was starting from ~350 KB downstream of GDF6. Otic lineage cells differentiated from induced pluripotent stem cells derived from an affected individual show reduced expression of GDF6 compared to control cells. A mouse knock-out of Gdf6 reveals cochlear aplasia closely resembling the human phenotype. We conclude that GDF6 plays a necessary role in early cochlear development controlled by cis-regulatory elements located within ~500 KB region of the genome in humans and that its disruption leads to deafness due to cochlear aplasia.

Authors

Guney Bademci, Clemer Abad, Filiz Basak Cengiz, Serhat Seyhan, Armagan Incesulu, Shengru Guo, Suat Fitoz, Emine Ikbal Atli, Nicholas C. Gosstola, Selma Demir, Brett M. Colbert, Gozde Cosar Seyhan, Claire J. Sineni, Duygu Duman, Hakan Gurkan, Cynthia Casson Morton, Derek M. Dykxhoorn, Katherina Walz, Mustafa Tekin

×

No posts were found with this tag.