Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,522 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 176
  • 177
  • 178
  • …
  • 2552
  • 2553
  • Next →
Dysfunctional polycomb transcriptional repression contributes to lamin A/C–dependent muscular dystrophy
Andrea Bianchi, … , Claudia Bearzi, Chiara Lanzuolo
Andrea Bianchi, … , Claudia Bearzi, Chiara Lanzuolo
Published January 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128161.
View: Text | PDF

Dysfunctional polycomb transcriptional repression contributes to lamin A/C–dependent muscular dystrophy

  • Text
  • PDF
Abstract

Lamin A is a component of the inner nuclear membrane that, together with epigenetic factors, organizes the genome in higher order structures required for transcriptional control. Mutations in the lamin A/C gene cause several diseases belonging to the class of laminopathies, including muscular dystrophies. Nevertheless, molecular mechanisms involved in the pathogenesis of lamin A–dependent dystrophies are still largely unknown. The polycomb group (PcG) of proteins are epigenetic repressors and lamin A interactors, primarily involved in the maintenance of cell identity. Using a murine model of Emery-Dreifuss muscular dystrophy (EDMD), we show here that lamin A loss deregulated PcG positioning in muscle satellite stem cells, leading to derepression of non–muscle-specific genes and p16INK4a, a senescence driver encoded in the Cdkn2a locus. This aberrant transcriptional program caused impairment in self-renewal, loss of cell identity, and premature exhaustion of the quiescent satellite cell pool. Genetic ablation of the Cdkn2a locus restored muscle stem cell properties in lamin A/C–null dystrophic mice. Our findings establish a direct link between lamin A and PcG epigenetic silencing and indicate that lamin A–dependent muscular dystrophy can be ascribed to intrinsic epigenetic dysfunctions of muscle stem cells.

Authors

Andrea Bianchi, Chiara Mozzetta, Gloria Pegoli, Federica Lucini, Sara Valsoni, Valentina Rosti, Cristiano Petrini, Alice Cortesi, Francesco Gregoretti, Laura Antonelli, Gennaro Oliva, Marco De Bardi, Roberto Rizzi, Beatrice Bodega, Diego Pasini, Francesco Ferrari, Claudia Bearzi, Chiara Lanzuolo

×

TGF-β–induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis
Clara Dees, … , Georg Schett, Jörg H.W. Distler
Clara Dees, … , Georg Schett, Jörg H.W. Distler
Published January 28, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI122462.
View: Text | PDF

TGF-β–induced epigenetic deregulation of SOCS3 facilitates STAT3 signaling to promote fibrosis

  • Text
  • PDF
Abstract

Fibroblasts are key effector cells in tissue remodeling. They remain persistently activated in fibrotic diseases, resulting in progressive deposition of extracellular matrix. Although fibroblast activation may be initiated by external factors, prolonged activation can induce an “autonomous,” self-maintaining profibrotic phenotype in fibroblasts. Accumulating evidence suggests that epigenetic alterations play a central role in establishing this persistently activated pathologic phenotype of fibroblasts. We demonstrated that in fibrotic skin of patients with systemic sclerosis (SSc), a prototypical idiopathic fibrotic disease, TGF-β induced the expression of DNA methyltransferase 3A (DNMT3A) and DNMT1 in fibroblasts in a SMAD-dependent manner to silence the expression of suppressor of cytokine signaling 3 (SOCS3) by promoter hypermethylation. Downregulation of SOCS3 facilitated activation of STAT3 to promote fibroblast-to-myofibroblast transition, collagen release, and fibrosis in vitro and in vivo. Reestablishment of the epigenetic control of STAT3 signaling by genetic or pharmacological inactivation of DNMT3A reversed the activated phenotype of SSc fibroblasts in tissue culture, inhibited TGF-β–dependent fibroblast activation, and ameliorated experimental fibrosis in murine models. These findings identify a pathway of epigenetic imprinting of fibroblasts in fibrotic disease with translational implications for the development of targeted therapies in fibrotic diseases.

Authors

Clara Dees, Sebastian Pötter, Yun Zhang, Christina Bergmann, Xiang Zhou, Markus Luber, Thomas Wohlfahrt, Emmanuel Karouzakis, Andreas Ramming, Kolja Gelse, Akihiko Yoshimura, Rudolf Jaenisch, Oliver Distler, Georg Schett, Jörg H.W. Distler

×

IL-17–producing γδ T cells protect against Clostridium difficile infection
Yee-Shiuan Chen, … , Sing Sing Way, David B. Haslam
Yee-Shiuan Chen, … , Sing Sing Way, David B. Haslam
Published January 28, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI127242.
View: Text | PDF

IL-17–producing γδ T cells protect against Clostridium difficile infection

  • Text
  • PDF
Abstract

Colitis caused by Clostridium difficile infection is a growing cause of human morbidity and mortality, especially after antibiotic use in health care settings. The natural immunity of newborn infants and protective host immune mediators against C. difficile infection are not fully understood, with data suggesting that inflammation can be either protective or pathogenic. Here, we show an essential role for IL-17A produced by γδ T cells in host defense against C. difficile infection. Fecal extracts from children with C. difficile infection showed increased IL-17A and T cell receptor γ chain expression, and IL-17 production by intestinal γδ T cells was efficiently induced after infection in mice. C. difficile–induced tissue inflammation and mortality were markedly increased in mice deficient in IL-17A or γδ T cells. Neonatal mice, with naturally expanded RORγt+ γδ T cells poised for IL-17 production were resistant to C. difficile infection, whereas elimination of γδ T cells or IL-17A each efficiently overturned neonatal resistance against infection. These results reveal an expanded role for IL-17–producing γδ T cells in neonatal host defense against infection and provide a mechanistic explanation for the clinically observed resistance of infants to C. difficile colitis.

Authors

Yee-Shiuan Chen, Iuan-Bor Chen, Giang Pham, Tzu-Yu Shao, Hansraj Bangar, Sing Sing Way, David B. Haslam

×

Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model
Asante Hatcher, … , Benjamin Deneen, Jeffrey L. Noebels
Asante Hatcher, … , Benjamin Deneen, Jeffrey L. Noebels
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133316.
View: Text | PDF

Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model

  • Text
  • PDF
Abstract

Seizures often herald the clinical appearance of gliomas or appear at later stages. Dissecting their precise evolution and cellular pathogenesis in brain malignancies could inform the development of staged therapies for these highly pharmaco-resistant epilepsies. Studies in immunodeficient xenograft models have identified local interneuron loss and excess glial glutamate release as chief contributors to network disinhibition, but how hyperexcitability in the peritumoral microenvironment evolves in an immunocompetent brain is unclear. We generated gliomas in WT mice via in utero deletion of key tumor suppressor genes and serially monitored cortical epileptogenesis during tumor infiltration with in vivo electrophysiology and GCAMP7 calcium imaging, revealing a reproducible progression from hyperexcitability to convulsive seizures. Long before seizures, coincident with loss of inhibitory cells and their protective scaffolding, gain of glial glutamate antiporter xCT expression, and reactive astrocytosis, we detected local Iba1+ microglial inflammation that intensified and later extended far beyond tumor boundaries. Hitherto unrecognized episodes of cortical spreading depolarization that arose frequently from the peritumoral region may provide a mechanism for transient neurological deficits. Early blockade of glial xCT activity inhibited later seizures, and genomic reduction of host brain excitability by deleting MapT suppressed molecular markers of epileptogenesis and seizures. Our studies confirmed xenograft tumor–driven pathobiology and revealed early and late components of tumor-related epileptogenesis in a genetically tractable, immunocompetent mouse model of glioma, allowing the complex dissection of tumor versus host pathogenic seizure mechanisms.

Authors

Asante Hatcher, Kwanha Yu, Jochen Meyer, Isamu Aiba, Benjamin Deneen, Jeffrey L. Noebels

×

Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells
Manikandan Palrasu, … , Richard M. Peek Jr., Alexander I. Zaika
Manikandan Palrasu, … , Richard M. Peek Jr., Alexander I. Zaika
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130015.
View: Text | PDF

Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells

  • Text
  • PDF
Abstract

Approximately half of the world’s population is infected with the stomach pathogen Helicobacter pylori. Infection with H. pylori is the main risk factor for distal gastric cancer. Bacterial virulence factors, such as the oncoprotein CagA, augment cancer risk. Yet despite high infection rates, only a fraction of H. pylori–infected individuals develop gastric cancer. This raises the question of defining the specific host and bacterial factors responsible for gastric tumorigenesis. To investigate the tumorigenic determinants, we analyzed gastric tissues from human subjects and animals infected with H. pylori bacteria harboring different CagA status. For laboratory studies, well-defined H. pylori strain B128 and its cancerogenic derivative strain 7.13, as well as various bacterial isogenic mutants were employed. We found that H. pylori compromises key tumor suppressor mechanisms: the host stress and apoptotic responses. Our studies showed that CagA induces phosphorylation of XIAP E3 ubiquitin ligase, which enhances ubiquitination and proteasomal degradation of the host proapoptotic factor Siva1. This process is mediated by the PI3K/Akt pathway. Inhibition of Siva1 by H. pylori increases survival of human cells with damaged DNA. It occurs in a strain-specific manner and is associated with the ability to induce gastric tumor.

Authors

Manikandan Palrasu, Elena Zaika, Wael El-Rifai, Monica Garcia-Buitrago, Maria Blanca Piazuelo, Keith T. Wilson, Richard M. Peek Jr., Alexander I. Zaika

×

Transcriptional and cytopathological hallmarks of FSHD in chronic DUX4-expressing mice
Darko Bosnakovski, … , Dawn A. Lowe, Michael Kyba
Darko Bosnakovski, … , Dawn A. Lowe, Michael Kyba
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133303.
View: Text | PDF

Transcriptional and cytopathological hallmarks of FSHD in chronic DUX4-expressing mice

  • Text
  • PDF
Abstract

Facioscapulohumeral muscular dystrophy (FSHD) is caused by loss of repression of the DUX4 gene; however, the DUX4 protein is rare and difficult to detect in human muscle biopsies, and pathological mechanisms are obscure. FSHD is also a chronic disease that progresses slowly over decades. We used the sporadic, low-level, muscle-specific expression of DUX4 enabled by the iDUX4pA-HSA mouse to develop a chronic long-term muscle disease model. After 6 months of extremely low sporadic DUX4 expression, dystrophic muscle presented hallmarks of FSHD histopathology, including muscle degeneration, capillary loss, fibrosis, and atrophy. We investigated the transcriptional profile of whole muscle as well as endothelial cells and fibroadiopogenic progenitors (FAPs). Strikingly, differential gene expression profiles of both whole muscle and, to a lesser extent, FAPs, showed significant overlap with transcriptional profiles of MRI-guided human FSHD muscle biopsies. These results demonstrate a pathophysiological similarity between disease in muscles of iDUX4pA-HSA mice and humans with FSHD, solidifying the value of chronic rare DUX4 expression in mice for modeling pathological mechanisms in FSHD and highlighting the importance FAPs in this disease.

Authors

Darko Bosnakovski, Ahmed S. Shams, Ce Yuan, Meiricris T. da Silva, Elizabeth T. Ener, Cory W. Baumann, Angus J. Lindsay, Mayank Verma, Atsushi Asakura, Dawn A. Lowe, Michael Kyba

×

CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo
Abdullah Alajati, … , Johann De Bono, Andrea Alimonti
Abdullah Alajati, … , Johann De Bono, Andrea Alimonti
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131133.
View: Text | PDF

CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo

  • Text
  • PDF
Abstract

The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti–CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.

Authors

Abdullah Alajati, Mariantonietta D’Ambrosio, Martina Troiani, Simone Mosole, Laura Pellegrini, Jingjing Chen, Ajinkya Revandkar, Marco Bolis, Jean-Philippe Theurillat, Ilaria Guccini, Marco Losa, Arianna Calcinotto, Gaston De Bernardis, Emiliano Pasquini, Rocco D’Antuono, Adam Sharp, Ines Figueiredo, Daniel Nava Rodrigues, Jonathan Welti, Veronica Gil, Wei Yuan, Tatjana Vlajnic, Lukas Bubendorf, Giovanna Chiorino, Letizia Gnetti, Verónica Torrano, Arkaitz Carracedo, Laura Camplese, Susumu Hirabayashi, Elena Canato, Gianfranco Pasut, Monica Montopoli, Jan Hendrik Rüschoff, Peter Wild, Holger Moch, Johann De Bono, Andrea Alimonti

×

Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice
Dario F. De Jesus, … , Jussi Pihlajamäki, Rohit N. Kulkarni
Dario F. De Jesus, … , Jussi Pihlajamäki, Rohit N. Kulkarni
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI127502.
View: Text | PDF

Parental metabolic syndrome epigenetically reprograms offspring hepatic lipid metabolism in mice

  • Text
  • PDF
Abstract

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Although gene-environment interactions have been implicated in the etiology of several disorders, the impact of paternal and/or maternal metabolic syndrome on the clinical phenotypes of offspring and the underlying genetic and epigenetic contributors of NAFLD have not been fully explored. To this end, we used the liver-specific insulin receptor knockout (LIRKO) mouse, a unique nondietary model manifesting 3 hallmarks that confer high risk for the development of NAFLD: hyperglycemia, insulin resistance, and dyslipidemia. We report that parental metabolic syndrome epigenetically reprograms members of the TGF-β family, including neuronal regeneration–related protein (NREP) and growth differentiation factor 15 (GDF15). NREP and GDF15 modulate the expression of several genes involved in the regulation of hepatic lipid metabolism. In particular, NREP downregulation increases the protein abundance of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and ATP-citrate lyase (ACLY) in a TGF-β receptor/PI3K/protein kinase B–dependent manner, to regulate hepatic acetyl-CoA and cholesterol synthesis. Reduced hepatic expression of NREP in patients with NAFLD and substantial correlations between low serum NREP levels and the presence of steatosis and nonalcoholic steatohepatitis highlight the clinical translational relevance of our findings in the context of recent preclinical trials implicating ACLY in NAFLD progression.

Authors

Dario F. De Jesus, Kazuki Orime, Dorota Kaminska, Tomohiko Kimura, Giorgio Basile, Chih-Hao Wang, Larissa Haertle, Renzo Riemens, Natalie K. Brown, Jiang Hu, Ville Männistö, Amélia M. Silva, Ercument Dirice, Yu-Hua Tseng, Thomas Haaf, Jussi Pihlajamäki, Rohit N. Kulkarni

×

Local microvascular leakage promotes trafficking of activated neutrophils to remote organs
Charlotte Owen-Woods, … , Mathieu-Benoit Voisin, Sussan Nourshargh
Charlotte Owen-Woods, … , Mathieu-Benoit Voisin, Sussan Nourshargh
Published January 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133661.
View: Text | PDF

Local microvascular leakage promotes trafficking of activated neutrophils to remote organs

  • Text
  • PDF
Abstract

Increased microvascular permeability to plasma proteins and neutrophil emigration are hallmarks of innate immunity and key features of numerous inflammatory disorders. Although neutrophils can promote microvascular leakage, the impact of vascular permeability on neutrophil trafficking is unknown. Here, through the application of confocal intravital microscopy, we report that vascular permeability–enhancing stimuli caused a significant frequency of neutrophil reverse transendothelial cell migration (rTEM). Furthermore, mice with a selective defect in microvascular permeability enhancement (VEC-Y685F-ki) showed reduced incidence of neutrophil rTEM. Mechanistically, elevated vascular leakage promoted movement of interstitial chemokines into the bloodstream, a response that supported abluminal-to-luminal neutrophil TEM. Through development of an in vivo cell labeling method we provide direct evidence for the systemic dissemination of rTEM neutrophils, and showed them to exhibit an activated phenotype and be capable of trafficking to the lungs where their presence was aligned with regions of vascular injury. Collectively, we demonstrate that increased microvascular leakage reverses the localization of directional cues across venular walls, thus causing neutrophils engaged in diapedesis to reenter the systemic circulation. This cascade of events offers a mechanism to explain how local tissue inflammation and vascular permeability can induce downstream pathological effects in remote organs, most notably in the lungs.

Authors

Charlotte Owen-Woods, Régis Joulia, Anna Barkaway, Loïc Rolas, Bin Ma, Astrid Fee Nottebaum, Kenton P. Arkill, Monja Stein, Tamara Girbl, Matthew Golding, David O. Bates, Dietmar Vestweber, Mathieu-Benoit Voisin, Sussan Nourshargh

×

Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control
Xiaotong Cheng, … , Tammie Bishop, Peter J. Ratcliffe
Xiaotong Cheng, … , Tammie Bishop, Peter J. Ratcliffe
Published January 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133194.
View: Text | PDF

Marked and rapid effects of pharmacological HIF-2α antagonism on hypoxic ventilatory control

  • Text
  • PDF
Abstract

Hypoxia-inducible factor (HIF) is strikingly upregulated in many types of cancer, and there is great interest in applying inhibitors of HIF as anticancer therapeutics. The most advanced of these are small molecules that target the HIF-2 isoform through binding the PAS-B domain of HIF-2α. These molecules are undergoing clinical trials with promising results in renal and other cancers where HIF-2 is considered to be driving growth. Nevertheless, a central question remains as to whether such inhibitors affect physiological responses to hypoxia at relevant doses. Here, we show that pharmacological HIF-2α inhibition with PT2385, at doses similar to those reported to inhibit tumor growth, rapidly impaired ventilatory responses to hypoxia, abrogating both ventilatory acclimatization and carotid body cell proliferative responses to sustained hypoxia. Mice carrying a HIF-2α PAS-B S305M mutation that disrupts PT2385 binding, but not dimerization with HIF-1β, did not respond to PT2385, indicating that these effects are on-target. Furthermore, the finding of a hypomorphic ventilatory phenotype in untreated HIF-2α S305M mutant mice suggests a function for the HIF-2α PAS-B domain beyond heterodimerization with HIF-1β. Although PT2385 was well tolerated, the findings indicate the need for caution in patients who are dependent on hypoxic ventilatory drive.

Authors

Xiaotong Cheng, Maria Prange-Barczynska, James W. Fielding, Minghao Zhang, Alana L. Burrell, Joanna D.C.C. Lima, Luise Eckardt, Isobel L.A. Argles, Christopher W. Pugh, Keith J. Buckler, Peter A. Robbins, Emma J. Hodson, Richard K. Bruick, Lucy M. Collinson, Fraydoon Rastinejad, Tammie Bishop, Peter J. Ratcliffe

×
  • ← Previous
  • 1
  • 2
  • …
  • 176
  • 177
  • 178
  • …
  • 2552
  • 2553
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts