Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Pulmonology

  • 156 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 15
  • 16
  • Next →
Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation
Cong Jin, … , W. Michael Foster, Soman N. Abraham
Cong Jin, … , W. Michael Foster, Soman N. Abraham
Published February 1, 2011
Citation Information: J Clin Invest. 2011;121(3):941-955. https://doi.org/10.1172/JCI43584.
View: Text | PDF | Corrigendum | Expression of Concern

Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation

  • Text
  • PDF
Abstract

Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and a cellular infiltrate dominated by eosinophils. Numerous epidemiological studies have related the exacerbation of allergic asthma with an increase in ambient inhalable particulate matter from air pollutants. This is because inhalable particles efficiently deliver airborne allergens deep into the airways, where they can aggravate allergic asthma symptoms. However, the cellular mechanisms by which inhalable particulate allergens (pAgs) potentiate asthmatic symptoms remain unknown, in part because most in vivo and in vitro studies exploring the pathogenesis of allergic asthma use soluble allergens (sAgs). Using a mouse model of allergic asthma, we found that, compared with their sAg counterparts, pAgs triggered markedly heightened pulmonary eosinophilia in allergen-sensitized mice. Mast cells (MCs) were implicated in this divergent response, as the differences in airway inflammatory responses provoked by the physical nature of the allergens were attenuated in MC-deficient mice. The pAgs were found to mediate MC-dependent responses by enhancing retention of pAg/IgE/FcεRI complexes within lipid raft–enriched, CD63+ endocytic compartments, which prolonged IgE/FcεRI-initiated signaling and resulted in heightened cytokine responses. These results reveal how the physical attributes of allergens can co-opt MC endocytic circuitry and signaling responses to aggravate pathological responses of allergic asthma in mice.

Authors

Cong Jin, Christopher P. Shelburne, Guojie Li, Kristina J. Riebe, Gregory D. Sempowski, W. Michael Foster, Soman N. Abraham

×

Airway Fractal Dimension Predicts Respiratory Morbidity and Mortality in COPD
Sandeep Bodduluri, … , Mark T. Dransfield, Surya P. Bhatt
Sandeep Bodduluri, … , Mark T. Dransfield, Surya P. Bhatt
Published September 26, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI120693.
View: Text | PDF | Erratum

Airway Fractal Dimension Predicts Respiratory Morbidity and Mortality in COPD

  • Text
  • PDF
Abstract

BACKGROUND. Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling. Characterization of airway changes on computed tomography has been challenging due to the complexity of the recurring branching patterns, and this can be better measured using fractal dimensions. METHODS. We analyzed segmented airway trees of 8135 participants enrolled in the COPDGene cohort. The fractal complexity of the segmented airway tree was measured by the Airway Fractal Dimension (AFD) using the Minkowski-Bouligand box-counting dimension. We examined associations between AFD and lung function and respiratory morbidity using multivariable regression analyses. We further estimated the extent of peribronchial emphysema (%) within 5mm of the airway tree as this is likely to affect AFD. We classified participants into 4 groups based on median AFD and %peribronchial emphysema, and estimated survival. RESULTS. AFD was significantly associated with FEV1 (p<0.001) and FEV1/FVC (p<0.001) after adjusting for age, race, gender, smoking status, pack-years of smoking, body-mass-index, CT emphysema, air trapping, airway thickness, and CT scanner type. On multivariable analysis, AFD was also associated with respiratory-quality of life and six-minute walk distance, as well as exacerbations, lung function decline and mortality on longitudinal follow-up. We identified a subset of participants with AFDmedian who had worse survival compared with participants with high AFD and low peribronchial emphysema (adjusted HR = 2.72, 95%CI 2.20 to 3.35; p<0.001), a substantial number of whom were not identified by traditional spirometry severity grades. CONCLUSIONS. Airway fractal dimension as a measure of airway branching complexity and remodeling in smokers is associated with respiratory morbidity and lung function change, offers prognostic information additional to traditional CT measures of airway wall thickness, and can be used to estimate mortality risk.

Authors

Sandeep Bodduluri, Abhilash S. Kizhakke Puliyakote, Sarah E. Gerard, Joseph M. Reinhardt, Eric A. Hoffman, John D. Newell Jr., Hrudaya P. Nath, MeiLan K. Han, George R. Washko, Raúl San José Estépar, Mark T. Dransfield, Surya P. Bhatt

×

Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype
Chaoqun Wang, … , Harold A. Chapman, Tien Peng
Chaoqun Wang, … , Harold A. Chapman, Tien Peng
Published July 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99435.
View: Text | PDF

Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype

  • Text
  • PDF
Abstract

Genome-wide association studies have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli. Single cell RNA-sequencing showed that the hedgehog-receptive mesenchyme is composed of mostly fibroblasts with distinct proximal and distal subsets with discrete identities. Ectopic hedgehog activation in the distal fibroblasts promoted expression of proximal fibroblast markers, and promoted loss of distal alveoli and airspace enlargement of over twenty percent compared to controls. We found that hedgehog suppressed mesenchymal-derived mitogens enriched in distal fibroblasts that regulate alveolar stem cell regeneration and airspace size. Finally, single cell analysis of the human lung mesenchyme showed that segregated proximal-distal identity with preferential hedgehog activation in the proximal fibroblasts is conserved between mice and humans. In conclusion, we showed that differential hedgehog activation segregates mesenchymal identities of distinct fibroblast subsets, and disruption of fibroblast identity can alter the alveolar stem cell niche leading to emphysematous changes in the murine lung.

Authors

Chaoqun Wang, Nabora S. Reyes de Mochel, Stephanie A. Christenson, Monica Cassandras, Rebecca Moon, Alexis N. Brumwell, Lauren E. Byrnes, Alfred Li, Yasuyuki Yokosaki, Peiying Shan, Julie B. Sneddon, David Jablons, Patty J. Lee, Michael A. Matthay, Harold A. Chapman, Tien Peng

×

Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis
Shin-Ichi Nureki, … , Surafel Mulugeta, Michael F. Beers
Shin-Ichi Nureki, … , Surafel Mulugeta, Michael F. Beers
Published June 19, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99287.
View: Text | PDF

Expression of mutant Sftpc in murine alveolar epithelia drives spontaneous lung fibrosis

  • Text
  • PDF
Abstract

Epithelial cell dysfunction is postulated as an important component in the pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Mutations in the Surfactant Protein C [SP-C] gene [SFTPC], an alveolar type 2 (AT2) cell restricted protein, have been found in sporadic and familial IPF. To causally link these events, we developed a knock-in mouse model capable of regulated expression of an IPF-associated Isoleucine to Threonine substitution at codon 73 [I73T] in Sftpc (SP-CI73T). Tamoxifen treated SP-CI73T cohorts developed rapid increases in SftpcI73T mRNA and misprocessed proSP-CI73T protein accompanied by increased early mortality (days 7-14). This acute phase was marked by diffuse parenchymal lung injury, tissue infiltration by monocytes, polycellular alveolitis, and elevations in bronchoalveolar lavage and AT2 mRNA contents of select inflammatory cytokines. Resolution of alveolitis (2-4 weeks), commensurate with a rise in TGFB1, was followed by aberrant remodeling marked by collagen deposition, AT2 cell hyperplasia, a-SMA positive cells, and restrictive lung physiology. The translational relevance of the model was supported by detection of multiple IPF biomarkers previously reported in human cohorts. These data provide proof of principle that mutant SP-C expression in vivo causes spontaneous lung fibrosis strengthening the role of AT2 dysfunction as a key upstream driver of IPF pathogenesis.

Authors

Shin-Ichi Nureki, Yaniv Tomer, Alessandro Venosa, Jeremy Katzen, Scott J. Russo, Sarita Jamil, Matthew Barrett, Vivian Nguyen, Meghan Kopp, Surafel Mulugeta, Michael F. Beers

×

Endothelial cells in the innate response to allergens and initiation of atopic asthma
Kewal Asosingh, … , Mark Aronica, Serpil Erzurum
Kewal Asosingh, … , Mark Aronica, Serpil Erzurum
Published June 18, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97720.
View: Text | PDF

Endothelial cells in the innate response to allergens and initiation of atopic asthma

  • Text
  • PDF
Abstract

Protease-activated receptor 2 (PAR-2), an airway epithelial pattern recognition receptor (PRR), participates in the genesis of house dust mite–induced (HDM-induced) asthma. Here, we hypothesized that lung endothelial cells and proangiogenic hematopoietic progenitor cells (PACs) that express high levels of PAR-2 contribute to the initiation of atopic asthma. HDM extract (HDME) protease allergens were found deep in the airway mucosa and breaching the endothelial barrier. Lung endothelial cells and PACs released the Th2-promoting cytokines IL-1α and GM-CSF in response to HDME, and the endothelium had PAC-derived VEGF-C–dependent blood vessel sprouting. Blockade of the angiogenic response by inhibition of VEGF-C signaling lessened the development of inflammation and airway remodeling in the HDM model. Reconstitution of the bone marrow in WT mice with PAR-2–deficient bone marrow also reduced airway inflammation and remodeling. Adoptive transfer of PACs that had been exposed to HDME induced angiogenesis and Th2 inflammation with remodeling similar to that induced by allergen challenge. Our findings identify that lung endothelium and PACs in the airway sense allergen and elicit an angiogenic response that is central to the innate nonimmune origins of Th2 inflammation.

Authors

Kewal Asosingh, Kelly Weiss, Kimberly Queisser, Nicholas Wanner, Mei Yin, Mark Aronica, Serpil Erzurum

×

GATA6 suppression enhances lung specification from human pluripotent stem cells
Chia-Min Liao, … , Deborah L. French, Paul Gadue
Chia-Min Liao, … , Deborah L. French, Paul Gadue
Published June 11, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI96539.
View: Text | PDF

GATA6 suppression enhances lung specification from human pluripotent stem cells

  • Text
  • PDF
Abstract

The transcription factor GATA6 has been shown to be important for lung development and branching morphogenesis in mouse models, but its role in human lung development is largely unknown. Here, we studied the role of GATA6 during lung differentiation using human pluripotent stem cells. We found that the human stem cell lines most efficient at generating NKX2.1+ lung progenitors express lower endogenous levels of GATA6 during endoderm patterning and that knockdown of GATA6 during endoderm patterning increased the generation of these cells. Complete ablation of GATA6 resulted in the generation of lung progenitors displaying increased cell proliferation with up to a 15-fold expansion compared with control cells, whereas the null cell line displayed a defect in further development into mature lung cell types. Furthermore, transgenic expression of GATA6 at the endoderm anteriorization stage skewed development toward a liver fate at the expense of lung progenitors. Our results suggest a critical dosage effect of GATA6 during human endoderm patterning and a later requirement during terminal lung differentiation. These studies offer an approach of modulating GATA6 expression to enhance the production of lung progenitors from human stem cell sources.

Authors

Chia-Min Liao, Somdutta Mukherjee, Amita Tiyaboonchai, Jean Ann Maguire, Fabian L. Cardenas-Diaz, Deborah L. French, Paul Gadue

×

FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis
Loka R. Penke, … , Ingrid L. Bergin, Marc Peters-Golden
Loka R. Penke, … , Ingrid L. Bergin, Marc Peters-Golden
Published May 7, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI87631.
View: Text | PDF

FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis

  • Text
  • PDF
Abstract

While the transcription factor forkhead box M1 (FOXM1) is well known as a proto-oncogene, its potential role in lung fibroblast activation has never been explored. Here, we show that FOXM1 is more highly expressed in fibrotic than in normal lung fibroblasts in humans and mice. FOXM1 was required not only for cell proliferation in response to mitogens, but also for myofibroblast differentiation and apoptosis resistance elicited by TGF-β. The lipid mediator PGE2, acting via cAMP signaling, was identified as an endogenous negative regulator of FOXM1. Finally, genetic deletion of FOXM1 in fibroblasts or administration of the FOXM1 inhibitor Siomycin A in a therapeutic protocol attenuated bleomycin-induced pulmonary fibrosis. Our results identify FOXM1 as a driver of lung fibroblast activation and underscore the therapeutic potential of targeting FOXM1 for pulmonary fibrosis.

Authors

Loka R. Penke, Jennifer M. Speth, Vijaya L. Dommeti, Eric S. White, Ingrid L. Bergin, Marc Peters-Golden

×

Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease
Evelyn Tsantikos, … , Gary P. Anderson, Margaret L. Hibbs
Evelyn Tsantikos, … , Gary P. Anderson, Margaret L. Hibbs
Published April 30, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98224.
View: Text | PDF

Granulocyte-CSF links destructive inflammation and comorbidities in obstructive lung disease

  • Text
  • PDF
Abstract

Chronic obstructive pulmonary disease (COPD) is an incurable inflammatory lung disease that afflicts millions of people worldwide, and it is the fourth leading cause of death. Systemic comorbidities affecting the heart, skeletal muscle, bone, and metabolism are major contributors to morbidity and mortality. Given the surprising finding in large prospective clinical biomarker studies that peripheral white blood cell count is more closely associated with disease than inflammatory biomarkers, we probed the role of blood growth factors. Using the SHIP-1–deficient COPD mouse model, which manifests a syndrome of destructive lung disease and a complex of comorbid pathologies, we have identified a critical and unexpected role for granulocyte-CSF (G-CSF) in linking these conditions. Deletion of G-CSF greatly reduced airway inflammation and lung tissue destruction, and attenuated systemic inflammation, right heart hypertrophy, loss of fat reserves, and bone osteoporosis. In human clinical translational studies, bronchoalveolar lavage fluid of patients with COPD demonstrated elevated G-CSF levels. These studies suggest that G-CSF may play a central and unforeseen pathogenic role in COPD and its complex comorbidities, and identify G-CSF and its regulators as potential therapeutic targets.

Authors

Evelyn Tsantikos, Maverick Lau, Cassandra M.N. Castelino, Mhairi J. Maxwell, Samantha L. Passey, Michelle J. Hansen, Narelle E. McGregor, Natalie A. Sims, Daniel P. Steinfort, Louis B. Irving, Gary P. Anderson, Margaret L. Hibbs

×

Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation
Marie Pariollaud, … , Andrew S.I. Loudon, David W. Ray
Marie Pariollaud, … , Andrew S.I. Loudon, David W. Ray
Published March 13, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI93910.
View: Text | PDF

Circadian clock component REV-ERBα controls homeostatic regulation of pulmonary inflammation

  • Text
  • PDF
Abstract

Recent studies reveal that airway epithelial cells are critical pulmonary circadian pacemaker cells, mediating rhythmic inflammatory responses. Using mouse models, we now identify the rhythmic circadian repressor REV-ERB as essential to the mechanism coupling the pulmonary clock to innate immunity, involving both myeloid, and bronchial epithelial cells in temporal gating and determining amplitude of response to inhaled endotoxin. Dual mutation of REV-ERBα and its paralog REV-ERBβ in bronchial epithelia further augmented inflammatory responses and chemokine activation, but also initiated a basal inflammatory state, revealing a critical homeostatic role for REV-ERB proteins in the suppression of the endogenous pro-inflammatory mechanism in un-challenged cells. However, REV-ERBα plays the dominant role as deletion of REV-ERBβ alone had no impact on inflammatory responses. In turn, inflammatory challenges cause striking changes in stability and degradation of REV-ERBα protein, driven by SUMOylation and ubiquitination. We developed a novel selective oxazole-based inverse agonist of REV-ERB, which protects REV-ERBα protein from degradation and used this to reveal how pro-inflammatory cytokines trigger rapid degradation of REV-ERα in the elaboration of an inflammatory response. Thus, dynamic changes in stability of REV-ERα protein couple the core clock to innate immunity.

Authors

Marie Pariollaud, Julie Gibbs, Thomas Hopwood, Sheila Brown, Nicola Begley, Ryan Vonslow, Toryn Poolman, Baoqiang Guo, Ben Saer, D. Heulyn Jones, James P. Tellam, Stefano Bresciani, Nicholas C.O. Tomkinson, Justyna Wojno-Picon, Anthony W.J. Cooper, Dion A. Daniels, Ryan P. Trump, Daniel Grant, William Zuercher, Timothy M. Willson, Andrew S. MacDonald, Brian Bolognese, Patricia L. Podolin, Yolanda Sanchez, Andrew S.I. Loudon, David W. Ray

×

Disruption of staphylococcal aggregation protects against lethal lung injury
Jaime L. Hook, … , Sunita Bhattacharya, Jahar Bhattacharya
Jaime L. Hook, … , Sunita Bhattacharya, Jahar Bhattacharya
Published February 12, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI95823.
View: Text | PDF

Disruption of staphylococcal aggregation protects against lethal lung injury

  • Text
  • PDF
Abstract

Infection by Staphylococcus aureus strain USA300 causes tissue injury, multiorgan failure, and high mortality. However, the mechanisms by which the bacteria adhere to, then stabilize on, mucosal surfaces before causing injury remain unclear. We addressed these issues through the first real-time determinations of USA300-alveolar interactions in live lungs. We found that within minutes, inhaled USA300 established stable, self-associated microaggregates in niches at curved, but not at flat, regions of the alveolar wall. The microaggregates released α-hemolysin toxin, causing localized alveolar injury, as indicated by epithelial dye loss, mitochondrial depolarization, and cytosolic Ca2+ increase. Spread of cytosolic Ca2+ through intercellular gap junctions to adjoining, uninfected alveoli caused pulmonary edema. Systemic pretreatment with vancomycin, a USA300-cidal antibiotic, failed to protect mice infected with inhaled WT USA300. However, vancomycin pretreatment markedly abrogated mortality in mice infected with mutant USA300 that lacked the aggregation-promoting factor PhnD. We interpret USA300-induced mortality as having resulted from rapid bacterial aggregation in alveolar niches. These findings indicate, for the first time to our knowledge, that alveolar microanatomy is critical in promoting the aggregation and, hence, in causing USA300-induced alveolar injury. We propose that in addition to antibiotics, strategies for bacterial disaggregation may constitute novel therapy against USA300-induced lung injury.

Authors

Jaime L. Hook, Mohammad N. Islam, Dane Parker, Alice S. Prince, Sunita Bhattacharya, Jahar Bhattacharya

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 15
  • 16
  • Next →
Mucus tethering in asthma
Luke Bonser and colleagues characterize the composition and transport of pathogenic, asthma-associated mucus…
Published May 16, 2016
Scientific Show StopperPulmonology

Translating mechanical stress to fibrogenesis
Shaik Rahaman and colleagues reveal that TRPV4 channel activity links mechanical stress and pulmonary fibrosis…
Published November 3, 2014
Scientific Show StopperPulmonology
Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts