Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Nephrology

  • 273 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • Next →
Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding
Thomas Gevaert, … , Dirk De Ridder, Bernd Nilius
Thomas Gevaert, … , Dirk De Ridder, Bernd Nilius
Published October 18, 2007
Citation Information: J Clin Invest. 2007. https://doi.org/10.1172/JCI31766.
View: Text | PDF

Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding

  • Text
  • PDF
Abstract

Here we provide evidence for a critical role of the transient receptor potential cation channel, subfamily V, member 4 (TRPV4) in normal bladder function. Immunofluorescence demonstrated TRPV4 expression in mouse and rat urothelium and vascular endothelium, but not in other cell types of the bladder. Intracellular Ca2+ measurements on urothelial cells isolated from mice revealed a TRPV4-dependent response to the selective TRPV4 agonist 4α-phorbol 12,13-didecanoate and to hypotonic cell swelling. Behavioral studies demonstrated that TRPV4–/– mice manifest an incontinent phenotype but show normal exploratory activity and anxiety-related behavior. Cystometric experiments revealed that TRPV4–/– mice exhibit a lower frequency of voiding contractions as well as a higher frequency of nonvoiding contractions. Additionally, the amplitude of the spontaneous contractions in explanted bladder strips from TRPV4–/– mice was significantly reduced. Finally, a decreased intravesical stretch-evoked ATP release was found in isolated whole bladders from TRPV4–/– mice. These data demonstrate a previously unrecognized role for TRPV4 in voiding behavior, raising the possibility that TRPV4 plays a critical role in urothelium-mediated transduction of intravesical mechanical pressure.

Authors

Thomas Gevaert, Joris Vriens, Andrei Segal, Wouter Everaerts, Tania Roskams, Karel Talavera, Grzegorz Owsianik, Wolfgang Liedtke, Dirk Daelemans, Ilse Dewachter, Fred Van Leuven, Thomas Voets, Dirk De Ridder, Bernd Nilius

×

TLR4 activation mediates kidney ischemia/reperfusion injury
Huiling Wu, … , Alexandra F. Sharland, Steven J. Chadban
Huiling Wu, … , Alexandra F. Sharland, Steven J. Chadban
Published October 1, 2007
Citation Information: J Clin Invest. 2007;117(10):2847-2859. https://doi.org/10.1172/JCI31008.
View: Text | PDF

TLR4 activation mediates kidney ischemia/reperfusion injury

  • Text
  • PDF
Abstract

Ischemia/reperfusion injury (IRI) may activate innate immunity through the engagement of TLRs by endogenous ligands. TLR4 expressed within the kidney is a potential mediator of innate activation and inflammation. Using a mouse model of kidney IRI, we demonstrated a significant increase in TLR4 expression by tubular epithelial cells (TECs) and infiltrating leukocytes within the kidney following ischemia. TLR4 signaling through the MyD88-dependent pathway was required for the full development of kidney IRI, as both TLR4–/– and MyD88–/– mice were protected against kidney dysfunction, tubular damage, neutrophil and macrophage accumulation, and expression of proinflammatory cytokines and chemokines. In vitro, WT kidney TECs produced proinflammatory cytokines and chemokines and underwent apoptosis after ischemia. These effects were attenuated in TLR4–/– and MyD88–/– TECs. In addition, we demonstrated upregulation of the endogenous ligands high-mobility group box 1 (HMGB1), hyaluronan, and biglycan, providing circumstantial evidence that one or more of these ligands may be the source of TLR4 activation. To determine the relative contribution of TLR4 expression by parenchymal cells or leukocytes to kidney damage during IRI, we generated chimeric mice. TLR4–/– mice engrafted with WT hematopoietic cells had significantly lower serum creatinine and less tubular damage than WT mice reconstituted with TLR4–/– BM, suggesting that TLR4 signaling in intrinsic kidney cells plays the dominant role in mediating kidney damage.

Authors

Huiling Wu, Gang Chen, Kate R. Wyburn, Jianlin Yin, Patrick Bertolino, Josette M. Eris, Stephen I. Alexander, Alexandra F. Sharland, Steven J. Chadban

×

Intersectin links WNK kinases to endocytosis of ROMK1
Guocheng He, … , Shao-Kuei Huang, Chou-Long Huang
Guocheng He, … , Shao-Kuei Huang, Chou-Long Huang
Published April 2, 2007
Citation Information: J Clin Invest. 2007;117(4):1078-1087. https://doi.org/10.1172/JCI30087.
View: Text | PDF

Intersectin links WNK kinases to endocytosis of ROMK1

  • Text
  • PDF
Abstract

With-no-lysine (WNK) kinases are a novel family of protein kinases characterized by an atypical placement of the catalytic lysine. Mutations of 2 family members, WNK1 and WNK4, cause pseudohypoaldosteronism type 2 (PHA2), an autosomal-dominant disease characterized by hypertension and hyperkalemia. WNK1 and WNK4 stimulate clathrin-dependent endocytosis of renal outer medullar potassium 1 (ROMK1), and PHA2-causing mutations of WNK4 increase the endocytosis. How WNKs stimulate endocytosis of ROMK1 and how mutations of WNK4 increase the endocytosis are unknown. Intersectin (ITSN) is a multimodular endocytic scaffold protein. Here we show that WNK1 and WNK4 interacted with ITSN and that the interactions were crucial for stimulation of endocytosis of ROMK1 by WNKs. The stimulation of endocytosis of ROMK1 by WNK1 and WNK4 required specific proline-rich motifs of WNKs, but did not require their kinase activity. WNK4 interacted with ROMK1 as well as with ITSN. Disease-causing WNK4 mutations enhanced interactions of WNK4 with ITSN and ROMK1, leading to increased endocytosis of ROMK1. These results provide a molecular mechanism for stimulation of endocytosis of ROMK1 by WNK kinases.

Authors

Guocheng He, Hao-Ran Wang, Shao-Kuei Huang, Chou-Long Huang

×

Proteinuria precedes podocyte abnormalities inLamb2–/– mice, implicating the glomerular basement membrane as an albumin barrier
George Jarad, … , Andrey S. Shaw, Jeffrey H. Miner
George Jarad, … , Andrey S. Shaw, Jeffrey H. Miner
Published August 1, 2006
Citation Information: J Clin Invest. 2006;116(8):2272-2279. https://doi.org/10.1172/JCI28414.
View: Text | PDF

Proteinuria precedes podocyte abnormalities inLamb2–/– mice, implicating the glomerular basement membrane as an albumin barrier

  • Text
  • PDF
Abstract

Primary defects in either podocytes or the glomerular basement membrane (GBM) cause proteinuria, a fact that complicates defining the barrier to albumin. Laminin β2 (LAMB2) is a GBM component required for proper functioning of the glomerular filtration barrier. To investigate the GBM’s role in glomerular filtration, we characterized GBM and overlying podocyte architecture in relation to development and progression of proteinuria in Lamb2–/– mice, which model Pierson syndrome, a rare congenital nephrotic syndrome. We found ectopic deposition of several laminins and mislocalization of anionic sites in the GBM, which together suggest that the Lamb2–/– GBM is severely disorganized, although it is ultrastructurally intact. Importantly, albuminuria was detectable shortly after birth and preceded podocyte foot process effacement and loss of slit diaphragms by at least 7 days. Expression and localization of slit diaphragm and foot process–associated proteins appeared normal at early stages. GBM permeability to the electron-dense tracer ferritin was dramatically elevated in Lamb2–/– mice, even before widespread foot process effacement. Increased ferritin permeability was not observed in nephrotic CD2-associated protein–null (Cd2ap–/–) mice, which have a primary podocyte defect. Together these data show that the GBM serves as a barrier to protein in vivo and that the glomerular slit diaphragm alone is not sufficient to prevent the passage of albumin into the urinary space.

Authors

George Jarad, Jeanette Cunningham, Andrey S. Shaw, Jeffrey H. Miner

×

Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization
Rakesh Verma, … , Kevin Patrie, Lawrence B. Holzman
Rakesh Verma, … , Kevin Patrie, Lawrence B. Holzman
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1346-1359. https://doi.org/10.1172/JCI27414.
View: Text | PDF

Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization

  • Text
  • PDF
Abstract

A properly established and maintained podocyte intercellular junction, or slit diaphragm, is a necessary component of the selective permeability barrier of the kidney glomerulus. The observation that mutation or deletion of the slit diaphragm transmembrane protein nephrin results in failure of podocyte foot process morphogenesis and concomitant proteinuria first suggested the hypothesis that nephrin serves as a component of a signaling complex that directly integrates podocyte junctional integrity with cytoskeletal dynamics. The observations made herein provide the first direct evidence to our knowledge for a phosphorylation-mediated signaling mechanism by which this integrative function is derived. Our data support the model that during podocyte intercellular junction formation, engagement of the nephrin ectodomain induces transient Fyn catalytic activity that results in nephrin phosphorylation on specific nephrin cytoplasmic domain tyrosine residues. We found that this nephrin phosphorylation event resulted in recruitment of the SH2–SH3 domain–containing adapter protein Nck and assembly of actin filaments in an Nck-dependent fashion. Considered in the context of the role of nephrin family proteins in other organisms and the integral relationship of actin dynamics and junction formation, these observations establish a function for nephrin in regulating actin cytoskeletal dynamics.

Authors

Rakesh Verma, Iulia Kovari, Abdul Soofi, Deepak Nihalani, Kevin Patrie, Lawrence B. Holzman

×

Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin
Tobias B. Huber, … , Peter Mundel, Andrey S. Shaw
Tobias B. Huber, … , Peter Mundel, Andrey S. Shaw
Published May 1, 2006
Citation Information: J Clin Invest. 2006;116(5):1337-1345. https://doi.org/10.1172/JCI27400.
View: Text | PDF

Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin

  • Text
  • PDF
Abstract

Focal segmental glomerulosclerosis (FSGS) is the most common primary glomerular diagnosis resulting in end-stage renal disease. Defects in several podocyte proteins have been implicated in the etiology of FSGS, including podocin, α-actinin–4, CD2-associated protein (CD2AP), and TRPC6. Despite our growing understanding of genes involved in the pathogenesis of focal segmental sclerosis, the vast majority of patients with this disease, even those with a familial linkage, lack a clear genetic diagnosis. Here, we tested whether combinations of genetic heterozygosity (bigenic heterozygosity) that alone do not result in clinical kidney disease could function together to enhance susceptibility to glomerular damage and FSGS. Combinations of Cd2ap heterozygosity and heterozygosity of either synaptopodin (Synpo) or Fyn proto-oncogene (Fyn) but not kin of IRRE like 1 (Neph1) resulted in spontaneous proteinuria and in FSGS-like glomerular damage. These genetic interactions were also reflected at a functional level, as we found that CD2AP associates with Fyn and Synpo but not with Neph1. This demonstrates that bigenic heterozygosity can lead to FSGS and suggests that combined mutations in 2 or multiple podocyte genes may be a common etiology for glomerular disease.

Authors

Tobias B. Huber, Christopher Kwoh, Hui Wu, Katsuhiko Asanuma, Markus Gödel, Björn Hartleben, Ken J. Blumer, Jeffrey H. Miner, Peter Mundel, Andrey S. Shaw

×

An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption
/articles/view/26092
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):1110-1116. https://doi.org/10.1172/JCI26092.
View: Text | PDF

An unexpected role for angiotensin II in the link between dietary salt and proximal reabsorption

  • Text
  • PDF
Abstract

We set out to confirm the long-held, but untested, assumption that dietary salt affects proximal reabsorption through reciprocal effects on the renin-angiotensin system in a way that facilitates salt homeostasis. Wistar rats were fed standard or high-salt diets for 7 days and then subjected to renal micropuncture for determination of single-nephron GFR (SNGFR) and proximal reabsorption. The tubuloglomerular feedback (TGF) system was used as a tool to manipulate SNGFR in order to distinguish primary changes in net proximal reabsorption (Jprox) from changes due to glomerulotubular balance. The influence of Ang II over Jprox was determined by the sensitivity of Jprox to the AT1 receptor antagonist, losartan. Plasma, whole kidneys, and fluid from midproximal tubules were assayed for Ang II content by radioimmunoassay. In rats on the standard diet, losartan reduced Jprox by 25% and reduced the maximum range of the TGF response by 50%. The high-salt diet suppressed plasma and whole-kidney Ang II levels. But the high-salt diet failed to reduce the impact of losartan on Jprox or the TGF response and actually caused tubular fluid Ang II content to increase. The persistent effect of Ang II on Jprox prevented a major rise in late proximal flow rate in response to the high-salt diet. These observations challenge the traditional model and indicate that the role of proximal tubular Ang II in salt-replete rats is to stabilize nephron function rather than to contribute to salt homeostasis.

Authors

×

Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16
P. Jaya Kausalya, … , Michael Fromm, Walter Hunziker
P. Jaya Kausalya, … , Michael Fromm, Walter Hunziker
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):878-891. https://doi.org/10.1172/JCI26323.
View: Text | PDF

Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16

  • Text
  • PDF
Abstract

Claudin-16 (Cldn16) is selectively expressed at tight junctions (TJs) of renal epithelial cells of the thick ascending limb of Henle’s loop, where it plays a central role in the reabsorption of divalent cations. Over 20 different mutations in the CLDN16 gene have been identified in patients with familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), a disease of excessive renal Mg2+ and Ca2+ excretion. Here we show that disease-causing mutations can lead to the intracellular retention of Cldn16 or affect its capacity to facilitate paracellular Mg2+ transport. Nine of the 21 Cldn16 mutants we characterized were retained in the endoplasmic reticulum, where they underwent proteasomal degradation. Three mutants accumulated in the Golgi complex. Two mutants were efficiently delivered to lysosomes, one via clathrin-mediated endocytosis following transport to the cell surface and the other without appearing on the plasma membrane. The remaining 7 mutants localized to TJs, and 4 were found to be defective in paracellular Mg2+ transport. We demonstrate that pharmacological chaperones rescued surface expression of several retained Cldn16 mutants. We conclude that FHHNC can result from mutations in Cldn16 that affect intracellular trafficking or paracellular Mg2+ permeability. Knowledge of the molecular defects associated with disease-causing Cldn16 mutations may open new venues for therapeutic intervention.

Authors

P. Jaya Kausalya, Salah Amasheh, Dorothee Günzel, Henrik Wurps, Dominik Müller, Michael Fromm, Walter Hunziker

×

CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney
Ming Lu, … , Gerhard H. Giebisch, Steven C. Hebert
Ming Lu, … , Gerhard H. Giebisch, Steven C. Hebert
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):797-807. https://doi.org/10.1172/JCI26961.
View: Text | PDF

CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney

  • Text
  • PDF
Abstract

The cystic fibrosis transmembrane conductance regulator (CFTR) Cl– channel plays vital roles in fluid transport in many epithelia. While CFTR is expressed along the entire nephron, its function in renal tubule epithelial cells remains unclear, as no specific renal phenotype has been identified in cystic fibrosis. CFTR has been proposed as a regulator of the 30 pS, ATP-sensitive renal K channel (Kir1.1, also known as renal outer medullar K [ROMK]) that is critical for K secretion by cells of the thick ascending limb (TAL) and distal nephron segments responsive to aldosterone. We report here that both ATP and glibenclamide sensitivities of the 30 pS K channel in TAL cells were absent in mice lacking CFTR and in mice homozygous for the ΔF508 mutation. Curcumin treatment in ΔF508-CFTR mice partially reversed the defect in ATP sensitivity. We demonstrate that the effect of CFTR on ATP sensitivity was abrogated by increasing PKA activity. We propose that CFTR regulates the renal K secretory channel by providing a PKA-regulated functional switch that determines the distribution of open and ATP-inhibited K channels in apical membranes. We discuss the potential physiological role of this functional switch in renal K handling during water diuresis and the relevance to renal K homeostasis in cystic fibrosis.

Authors

Ming Lu, Qiang Leng, Marie E. Egan, Michael J. Caplan, Emile L. Boulpaep, Gerhard H. Giebisch, Steven C. Hebert

×

Tbx18 regulates the development of the ureteral mesenchyme
Rannar Airik, … , Marianne Petry, Andreas Kispert
Rannar Airik, … , Marianne Petry, Andreas Kispert
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):663-674. https://doi.org/10.1172/JCI26027.
View: Text | PDF

Tbx18 regulates the development of the ureteral mesenchyme

  • Text
  • PDF
Abstract

Congenital malformations of the urinary tract are a major cause of renal failure in children and young adults. They are often caused by physical obstruction or by functional impairment of the peristaltic machinery of the ureter. The underlying molecular and cellular defects are, however, poorly understood. Here we present the phenotypic characterization of a new mouse model for congenital ureter malformation that revealed the molecular pathway important for the formation of the functional mesenchymal coating of the ureter. The gene encoding the T-box transcription factor Tbx18 was expressed in undifferentiated mesenchymal cells surrounding the distal ureter stalk. In Tbx18–/– mice, prospective ureteral mesenchymal cells largely dislocalized to the surface of the kidneys. The remaining ureteral mesenchymal cells showed reduced proliferation and failed to differentiate into smooth muscles, but instead became fibrous and ligamentous tissue. Absence of ureteral smooth muscles resulted in a short hydroureter and hydronephrosis at birth. Our analysis also showed that the ureteral mesenchyme derives from a distinct cell population that is separated early in kidney development from that of other mesenchymal cells of the renal system.

Authors

Rannar Airik, Markus Bussen, Manvendra K. Singh, Marianne Petry, Andreas Kispert

×
  • ← Previous
  • 1
  • 2
  • …
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Video AbstractsNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts