Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Review

  • 150 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 14
  • 15
  • Next →
Adipocyte and lipid metabolism in cancer drug resistance
Yihai Cao
Yihai Cao
Published July 2, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127201.
View: Text | PDF

Adipocyte and lipid metabolism in cancer drug resistance

  • Text
  • PDF
Abstract

Development of novel and effective therapeutics for treating various cancers is probably the most congested and challenging enterprise of pharmaceutical companies. Diverse drugs targeting malignant and nonmalignant cells receive clinical approval each year from the FDA. Targeting cancer cells and nonmalignant cells unavoidably changes the tumor microenvironment, and cellular and molecular components relentlessly alter in response to drugs. Cancer cells often reprogram their metabolic pathways to adapt to environmental challenges and facilitate survival, proliferation, and metastasis. While cancer cells’ dependence on glycolysis for energy production is well studied, the roles of adipocytes and lipid metabolic reprogramming in supporting cancer growth, metastasis, and drug responses are less understood. This Review focuses on emerging mechanisms involving adipocytes and lipid metabolism in altering the response to cancer treatment. In particular, we discuss mechanisms underlying cancer-associated adipocytes and lipid metabolic reprogramming in cancer drug resistance.

Authors

Yihai Cao

×

Impact of estrogens in males and androgens in females
Stephen R. Hammes, Ellis R. Levin
Stephen R. Hammes, Ellis R. Levin
Published May 1, 2019
Citation Information: J Clin Invest. 2019;129(5):1818-1826. https://doi.org/10.1172/JCI125755.
View: Text | PDF

Impact of estrogens in males and androgens in females

  • Text
  • PDF
Abstract

Androgens and estrogens are known to be critical regulators of mammalian physiology and development. While these two classes of steroids share similar structures (in general, estrogens are derived from androgens via the enzyme aromatase), they subserve markedly different functions via their specific receptors. In the past, estrogens such as estradiol were thought to be most important in the regulation of female biology, while androgens such as testosterone and dihydrotestosterone were believed to primarily modulate development and physiology in males. However, the emergence of patients with deficiencies in androgen or estrogen hormone synthesis or actions, as well as the development of animal models that specifically target androgen- or estrogen-mediated signaling pathways, have revealed that estrogens and androgens regulate critical biological and pathological processes in both males and females. In fact, the concept of “male” and “female” hormones is an oversimplification of a complex developmental and biological network of steroid actions that directly impacts many organs. In this Review, we will discuss important roles of estrogens in males and androgens in females.

Authors

Stephen R. Hammes, Ellis R. Levin

×

The gut microbiota and graft-versus-host disease
David N. Fredricks
David N. Fredricks
Published May 1, 2019
Citation Information: J Clin Invest. 2019;129(5):1808-1817. https://doi.org/10.1172/JCI125797.
View: Text | PDF

The gut microbiota and graft-versus-host disease

  • Text
  • PDF
Abstract

Graft-versus-host disease (GvHD) is a common complication of hematopoietic cell transplantation that negatively impacts quality of life in recipients and can be fatal. Animal experiments and human studies provide compelling evidence that the gut microbiota is associated with risk of GvHD, but the nature of this relationship remains unclear. If the gut microbiota is a driver of GvHD pathogenesis, then manipulation of the gut microbiota offers one promising avenue for preventing or treating this common condition, and antibiotic stewardship efforts in transplantation may help preserve the indigenous microbiota and modulate immune responses to benefit the host.

Authors

David N. Fredricks

×

Oncolytic viruses: overcoming translational challenges
Jordi Martinez-Quintanilla, … , Melissa Chua, Khalid Shah
Jordi Martinez-Quintanilla, … , Melissa Chua, Khalid Shah
Published March 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122287.
View: Text | PDF

Oncolytic viruses: overcoming translational challenges

  • Text
  • PDF
Abstract

Oncolytic virotherapy (OVT) is a promising approach in which WT or engineered viruses selectively replicate and destroy tumor cells while sparing normal ones. In the last two decades, different oncolytic viruses (OVs) have been modified and tested in a number of preclinical studies, some of which have led to clinical trials in cancer patients. These clinical trials have revealed several critical limitations with regard to viral delivery, spread, resistance, and antiviral immunity. Here, we focus on promising research strategies that have been developed to overcome the aforementioned obstacles. Such strategies include engineering OVs to target a broad spectrum of tumor cells while evading the immune system, developing unique delivery mechanisms, combining other immunotherapeutic agents with OVT, and using clinically translatable mouse tumor models to potentially translate OVT more readily into clinical settings.

Authors

Jordi Martinez-Quintanilla, Ivan Seah, Melissa Chua, Khalid Shah

×

Autoimmune seizures and epilepsy
Christian Geis, … , Francesc Graus, Josep Dalmau
Christian Geis, … , Francesc Graus, Josep Dalmau
Published February 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125178.
View: Text | PDF

Autoimmune seizures and epilepsy

  • Text
  • PDF
Abstract

The rapid expansion in the number of encephalitis disorders associated with autoantibodies against neuronal proteins has led to an incremental increase in use of the term “autoimmune epilepsy,” yet has occurred with limited attention to the physiopathology of each disease and genuine propensity to develop epilepsy. Indeed, most autoimmune encephalitides present with seizures, but the probability of evolving to epilepsy is relatively small. The risk of epilepsy is higher for disorders in which the antigens are intracellular (often T cell–mediated) compared with disorders in which the antigens are on the cell surface (antibody-mediated). Most autoantibodies against neuronal surface antigens show robust effects on the target proteins, resulting in hyperexcitability and impairment of synaptic function and plasticity. Here, we trace the evolution of the concept of autoimmune epilepsy and examine common inflammatory pathways that might lead to epilepsy. Then, we focus on several antibody-mediated encephalitis disorders that associate with seizures and review the synaptic alterations caused by patients’ antibodies, with emphasis on those that have been modeled in animals (e.g., antibodies against NMDA, AMPA receptors, LGI1 protein) or in cultured neurons (e.g., antibodies against the GABAb receptor).

Authors

Christian Geis, Jesus Planagumà, Mar Carreño, Francesc Graus, Josep Dalmau

×

Selective tissue targeting of synthetic nucleic acid drugs
Punit P. Seth, … , Michael Tanowitz, C. Frank Bennett
Punit P. Seth, … , Michael Tanowitz, C. Frank Bennett
Published January 28, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125228.
View: Text | PDF

Selective tissue targeting of synthetic nucleic acid drugs

  • Text
  • PDF
Abstract

Antisense oligonucleotides (ASOs) are chemically synthesized nucleic acid analogs designed to bind to RNA by Watson-Crick base pairing. Following binding to the targeted RNA, the ASO perturbs RNA function by promoting selective degradation of the targeted RNA, altering RNA intermediary metabolism, or disrupting function of the RNA. Most antisense drugs are chemically modified to enhance their pharmacological properties and for passive targeting of the tissues of therapeutic interest. Recent advances in selective tissue targeting have resulted in a newer generation of ASO drugs that are more potent and better tolerated than previous generations, spawning renewed interest in identifying selective ligands that enhance targeted delivery of ASOs to tissues.

Authors

Punit P. Seth, Michael Tanowitz, C. Frank Bennett

×

Functional significance of the platelet immune receptors GPVI and CLEC-2
Julie Rayes, … , Steve P. Watson, Bernhard Nieswandt
Julie Rayes, … , Steve P. Watson, Bernhard Nieswandt
Published January 2, 2019
Citation Information: J Clin Invest. 2019;129(1):12-23. https://doi.org/10.1172/JCI122955.
View: Text | PDF

Functional significance of the platelet immune receptors GPVI and CLEC-2

  • Text
  • PDF
Abstract

Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine–based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.

Authors

Julie Rayes, Steve P. Watson, Bernhard Nieswandt

×

Mixing old and young: enhancing rejuvenation and accelerating aging
Ashley Lau, … , James L. Kirkland, Stefan G. Tullius
Ashley Lau, … , James L. Kirkland, Stefan G. Tullius
Published January 2, 2019
Citation Information: J Clin Invest. 2019;129(1):4-11. https://doi.org/10.1172/JCI123946.
View: Text | PDF

Mixing old and young: enhancing rejuvenation and accelerating aging

  • Text
  • PDF
Abstract

Donor age and recipient age are factors that influence transplantation outcomes. Aside from age-associated differences in intrinsic graft function and alloimmune responses, the ability of young and old cells to exert either rejuvenating or aging effects extrinsically may also apply to the transplantation of hematopoietic stem cells or solid organ transplants. While the potential for rejuvenation mediated by the transfer of youthful cells is currently being explored for therapeutic applications, aspects that relate to accelerating aging are no less clinically significant. Those effects may be particularly relevant in transplantation with an age discrepancy between donor and recipient. Here, we review recent advances in understanding the mechanisms by which young and old cells modify their environments to promote rejuvenation- or aging-associated phenotypes. We discuss their relevance to clinical transplantation and highlight potential opportunities for therapeutic intervention.

Authors

Ashley Lau, Brian K. Kennedy, James L. Kirkland, Stefan G. Tullius

×

Molecular imaging of fibrosis: recent advances and future directions
Sydney B. Montesi, … , Bryan C. Fuchs, Peter Caravan
Sydney B. Montesi, … , Bryan C. Fuchs, Peter Caravan
Published January 2, 2019
Citation Information: J Clin Invest. 2019;129(1):24-33. https://doi.org/10.1172/JCI122132.
View: Text | PDF

Molecular imaging of fibrosis: recent advances and future directions

  • Text
  • PDF
Abstract

Fibrosis, the progressive accumulation of connective tissue that occurs in response to injury, causes irreparable organ damage and may result in organ failure. The few available antifibrotic treatments modify the rate of fibrosis progression, but there are no available treatments to reverse established fibrosis. Thus, more effective therapies are urgently needed. Molecular imaging is a promising biomedical methodology that enables noninvasive visualization of cellular and subcellular processes. It provides a unique means to monitor and quantify dysregulated molecular fibrotic pathways in a noninvasive manner. Molecular imaging could be used for early detection, disease staging, and prognostication, as well as for assessing disease activity and treatment response. As fibrotic diseases are often molecularly heterogeneous, molecular imaging of a specific pathway could be used for patient stratification and cohort enrichment with the goal of improving clinical trial design and feasibility and increasing the ability to detect a definitive outcome for new therapies. Here we review currently available molecular imaging probes for detecting fibrosis and fibrogenesis, the active formation of new fibrous tissue, and their application to models of fibrosis across organ systems and fibrotic processes. We provide our opinion as to the potential roles of molecular imaging in human fibrotic diseases.

Authors

Sydney B. Montesi, Pauline Désogère, Bryan C. Fuchs, Peter Caravan

×

Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas
Estela Area-Gomez, … , Eric A. Schon, Serge Przedborski
Estela Area-Gomez, … , Eric A. Schon, Serge Przedborski
Published January 2, 2019
Citation Information: J Clin Invest. 2019;129(1):34-45. https://doi.org/10.1172/JCI120848.
View: Text | PDF

Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas

  • Text
  • PDF
Abstract

Mitochondrial respiratory deficiencies have been observed in numerous neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases. For decades, these reductions in oxidative phosphorylation (OxPhos) have been presumed to trigger an overall bioenergetic crisis in the neuron, resulting in cell death. While the connection between respiratory defects and neuronal death has never been proven, this hypothesis has been supported by the detection of nonspecific mitochondrial DNA mutations in these disorders. These findings led to the notion that mitochondrial respiratory defects could be initiators of these common neurodegenerative disorders, instead of being consequences of a prior insult, a theory we believe to be misconstrued. Herein, we review the roots of this mitochondrial hypothesis and offer a new perspective wherein mitochondria are analyzed not only from the OxPhos point of view, but also as a complex organelle residing at the epicenter of many metabolic pathways.

Authors

Estela Area-Gomez, Cristina Guardia-Laguarta, Eric A. Schon, Serge Przedborski

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • 5
  • …
  • 14
  • 15
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts