We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection.
Kanika Kanchan, Stepan Grinek, Henry T. Bahnson, Ingo Ruczinski, Gautam Shankar, David Larson, George Du Toit, Kathleen C. Barnes, Hugh A. Sampson, Mayte Suarez-Farinas, Gideon Lack, Gerald T. Nepom, Karen Cerosaletti, Rasika A. Mathias
BACKGROUND MEK inhibitors have limited activity in biliary tract cancers (BTCs) as monotherapy but are hypothesized to enhance responses to programmed death ligand 1 (PD-L1) inhibition.METHODS This open-label phase II study randomized patients with BTC to atezolizumab (anti–PD-L1) as monotherapy or in combination with cobimetinib (MEK inhibitor). Eligible patients had unresectable BTC with 1 to 2 lines of prior therapy in the metastatic setting, measurable disease, and Eastern Cooperative Oncology Group (ECOG) performance status less than or equal to 1. The primary endpoint was progression-free survival (PFS).RESULTS Seventy-seven patients were randomized and received study therapy. The trial met its primary endpoint, with a median PFS of 3.65 months in the combination arm versus 1.87 months in the monotherapy arm (HR 0.58, 90% CI 0.35–0.93, 1-tail P = 0.027). One patient in the combination arm (3.3%) and 1 patient in the monotherapy arm (2.8%) had a partial response. Combination therapy was associated with more rash, gastrointestinal events, CPK elevations, and thrombocytopenia. Exploratory analysis of tumor biopsies revealed enhanced expression of antigen processing and presentation genes and an increase in CD8/FoxP3 ratios with combination treatment. Patients with higher baseline or lower fold changes in expression of certain inhibitory ligands (LAG3, BTLA, VISTA) on circulating T cells had evidence of greater clinical benefit from the combination.CONCLUSION The combination of atezolizumab plus cobimetinib prolonged PFS as compared with atezolizumab monotherapy, but the low response rate in both arms highlights the immune-resistant nature of BTCs.TRIAL REGISTRATION ClinicalTrials.gov NCT03201458.FUNDING National Cancer Institute (NCI) Experimental Therapeutics Clinical Trials Network (ETCTN); F. Hoffmann-La Roche, Ltd.; NCI, NIH (R01 CA228414-01 and UM1CA186691); NCI’s Specialized Program of Research Excellence (SPORE) in Gastrointestinal Cancers (P50 CA062924); NIH Center Core Grant (P30 CA006973); and the Passano Foundation.
Mark Yarchoan, Leslie Cope, Amanda N. Ruggieri, Robert A. Anders, Anne M. Noonan, Laura W. Goff, Lipika Goyal, Jill Lacy, Daneng Li, Anuj K. Patel, Aiwu R. He, Ghassan K. Abou-Alfa, Kristen Spencer, Edward J. Kim, S. Lindsey Davis, Autumn J. McRee, Paul R. Kunk, Subir Goyal, Yuan Liu, Lauren Dennison, Stephanie Xavier, Aditya A. Mohan, Qingfeng Zhu, Andrea Wang-Gillam, Andrew Poklepovic, Helen X. Chen, Elad Sharon, Gregory B. Lesinski, Nilofer S. Azad
Rory D. de Vries, Marieke van der Heiden, Daryl Geers, Celine Imhof, Debbie van Baarle, RECOVAC-IR Collaborators
It has been revealed that 2’3’-cyclic-GMP-AMP (cGAMP), a second messenger that activates the antiviral stimulator of interferon genes (STING), elicits an antitumoral immune response. Since cGAMP cannot cross the cell membrane, it is not clear how intracellular STING has been activated by extracellular cGAMP until SLC19A1 was identified as an importer to transport extracellular cGAMP into cytosol. However, SLC19A1 deficient cells also sense extracellular cGAMP, suggesting the presence of mechanisms other than the facilitating transporters for STING sensing extracellular cGAMP. Here, we identified an alternatively spliced STING isoform (plasmatic membrane STING, pmSTING) that localized in the plasma membrane with its C-terminus outside the cell, due to lack of one transmembrane domain in its N-terminus compared to canonical STING, by using immunoprecipitation, immunofluorescence and flow cytometry. Further studies showed that extracellular cGAMP not only promoted the dimerization of pmSTING and interaction of pmSTING with Tank-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3), but also enhanced the phosphorylation of TBK1 and IRF3 and production of interferon in pmSTING transfected cells. Additionally, we also identified similar pmSTING isoforms in other animal species including human. This study suggests a conserved role for pmSTING in sensing extracellular cGAMP and provides insight into cGAMP’s role as an immunotransmitter.
Xiaobo Li, Yuanyuan Zhu, Xiao Zhang, Xiang An, Mingjiao Weng, Jiaqi Shi, Song Wang, Caiqi Liu, Shengnan Luo, Tongsen Zheng
Repair of the infarcted heart requires TGF-β/Smad3 signaling in cardiac myofibroblasts. However, TGF-β-driven myofibroblast activation needs to be tightly regulated in order to prevent excessive fibrosis and adverse remodeling that may precipitate heart failure. We hypothesized that induction of the inhibitory Smad, Smad7 may restrain infarct myofibroblast activation, and we examined the molecular mechanisms of Smad7 actions. In a mouse model of non-reperfused infarction, Smad3 activation triggered Smad7 synthesis in α-SMA+ infarct myofibroblasts, but not in α-SMA-/PDGFRα+ fibroblasts. Myofibroblast-specific Smad7 loss increased heart failure-related mortality, worsened dysfunction, and accentuated fibrosis in the infarct border zone and in the papillary muscles. Smad7 attenuated myofibroblast activation and reduced synthesis of structural and matricellular extracellular matrix proteins. Smad7 actions on TGF-β cascades involved de-activation of Smad2/3 and non-Smad pathways, without any effects on TGF-β receptor activity. Unbiased transcriptomic and proteomic analysis identified receptor tyrosine kinase signaling as a major target of Smad7. Smad7 interacted with Erbb2 in a TGF-independent manner and restrained Erbb1/Erbb2 activation, suppressing fibroblast expression of fibrogenic proteases, integrins and CD44. Smad7 induction in myofibroblasts serves as an endogenous TGF-β-induced negative feedback mechanism that inhibits post-infarction fibrosis by restraining Smad-dependent and Smad-independent TGF-β responses, and by suppressing TGF-independent fibrogenic actions of Erbb2.
Claudio Humeres, Arti V. Shinde, Anis Hanna, Linda Alex, Silvia C. Hernandez, Ruoshui Li, Bijun Chen, Simon J. Conway, Nikolaos G. Frangogiannis
Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions, multiple allergies, and isolated patient keratinocytes exhibit increased pro-allergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the three tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of two Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth and treatment with a targeted therapy markedly improved skin lesions in patients.
Lisa M. Godsel, Quinn R. Roth-Carter, Jennifer L. Koetsier, Lam C. Tsoi, Amber L. Huffine, Joshua A. Broussard, Gillian N. Fitz, Sarah M. Lloyd, Junghun Kweon, Hope E. Burks, Marihan Hegazy, Saki Amagai, Paul W. Harms, Xianying Xing, Joseph Kirma, Jodi L. Johnson, Gloria Urciuoli, Lynn T. Doglio, William R. Swindell, Rajeshwar Awatramani, Eli Sprecher, Xiaomin Bao, Eran Cohen-Barak, Caterina Missero, Johann E. Gudjonsson, Kathleen J. Green
Macrophages are highly heterogeneous immune cells that fulfill tissue-specific functions. Tissue-derived signals play a critical role in determining macrophage heterogeneity. However, these signals remain largely unknown. BMP receptor ALK1 is well-known for its role in blood vessel formation; however, its role within the immune system has never been revealed. Here, we found that BMP9/BMP10-ALK1 signaling controlled the identity and self-renewal of Kupffer cells (KCs) through a Smad4-dependent pathway. In contrast, ALK1 was dispensable for the maintenance of macrophages located in the lung, kidney, spleen and brain. Following ALK1 deletion, KCs were lost over time and were replaced by monocyte-derived macrophages. These hepatic macrophages displayed significantly reduced expression of the complement receptor VSIG4 and alterations in immune zonation and morphology, which is important for the tissue-specialized function of KCs. Furthermore, we found that this signaling pathway was important for KC-mediated Listeria monocytogenes capture, as the loss of ALK1 and Smad4 led to a failure of bacterial capture and overwhelming disseminated infections. Thus, ALK1 signaling instructs a tissue-specific phenotype that allows KCs to protect the host from systemic bacterial dissemination.
Dianyuan Zhao, Fengjiao Yang, Yang Wang, Site Li, Yang Li, Fei Hou, Wenting Yang, Di Liu, Yuandong Tao, Qian Li, Jing Wang, Fuchu He, Li Tang
Naive and memory CD4+ T cells reactive with human immunodeficiency virus type 1 (HIV-1) are detectable in unexposed, unimmunized individuals. The contribution of preexisting CD4+ T cells to a primary immune response was investigated in 20 HIV-1–seronegative volunteers vaccinated with an HIV-1 envelope (Env) plasmid DNA prime and recombinant modified vaccinia virus Ankara (MVA) boost in the HVTN 106 vaccine trial (clinicaltrials.gov NCT02296541). Prevaccination naive or memory CD4+ T cell responses directed against peptide epitopes in Env were identified in 14 individuals. After priming with DNA, 40% (8/20) of the elicited responses matched epitopes detected in the corresponding preimmunization memory repertoires, and clonotypes were shared before and after vaccination in 2 representative volunteers. In contrast, there were no shared epitope specificities between the preimmunization memory compartment and responses detected after boosting with recombinant MVA expressing a heterologous Env. Preexisting memory CD4+ T cells therefore shape the early immune response to vaccination with a previously unencountered HIV-1 antigen.
Suzanne L. Campion, Elena Brenna, Elaine Thomson, Will Fischer, Kristin Ladell, James E. McLaren, David A. Price, Nicole Frahm, Juliana M. McElrath, Kristen W. Cohen, Janine R. Maenza, Stephen R. Walsh, Lindsey R. Baden, Barton F. Haynes, Bette Korber, Persephone Borrow, Andrew J. McMichael
Excessive inflammation drives the progression from sepsis to septic shock. Macrophage migration inhibitory factor (MIF) is of interest because MIF promoter polymorphisms predict mortality in different infections, and anti-MIF antibody improves survival in experimental models when administered 8 hours after infectious insult. The recent description of a second MIF superfamily member, D-dopachrome tautomerase (D-DT/MIF-2), prompted closer investigation of MIF-dependent responses. We subjected Mif–/– and Mif-2–/– mice to polymicrobial sepsis and observed a survival benefit with Mif but not Mif-2 deficiency. Survival was associated with reduced numbers of small peritoneal macrophages (SPMs) that, in contrast to large peritoneal macrophages (LPMs), were recruited into the peritoneal cavity. LPMs produced higher quantities of MIF than SPMs, but SPMs expressed higher levels of inflammatory cytokines and the MIF receptors CD74 and CXCR2. Adoptive transfer of WT SPMs into Mif–/– hosts reduced the protective effect of Mif deficiency in polymicrobial sepsis. Notably, MIF-2 lacks the pseudo-(E)LR motif present in MIF that mediates CXCR2 engagement and SPM migration, supporting a specific role for MIF in the recruitment and accumulation of inflammatory SPMs.
Pathricia Veronica Tilstam, Wibke Schulte, Thomas Holowka, Bong-Sung Kim, Jessica Nouws, Maor Sauler, Marta Piecychna, Georgios Pantouris, Elias Lolis, Lin Leng, Jürgen Bernhagen, Günter Fingerle-Rowson, Richard Bucala
Memory B cells (MBC) can provide a recall response able to supplement waning antibodies with an affinity-matured response better able to neutralise variant viruses. We studied a cohort of elderly care home residents and younger staff (median age 87yrs and 56yrs respectively) who had survived COVID-19 outbreaks with only mild/asymptomatic infection. The cohort was selected to enrich for a high proportion who had lost neutralising antibodies (nAb), to specifically investigate the reserve immunity from SARS-CoV-2-specific MBC in this setting. Class-switched spike and RBD-tetramer-binding MBC persisted five months post-mild/asymptomatic SARS-CoV-2 infection, irrespective of age. The majority of spike/RBD-specific MBC had a classical phenotype but activated memory B cells, that may indicate ongoing antigenic stimulation or inflammation, were expanded in the elderly. Spike/RBD-specific MBC remained detectable in the majority who had lost nAb, although at lower frequencies and with a reduced IgG/IgA isotype ratio. Functional spike/S1/RBD-specific recall was also detectable by ELISpot in some who had lost nAb, but was significantly impaired in the elderly. Our findings demonstrate a reserve of SARS-CoV-2-specific MBC persists beyond loss of nAb, but highlight the need for careful monitoring of functional defects in spike/RBD-specific B cell immunity in the elderly.
Anna Jeffery-Smith, Alice R. Burton, Sabela Lens, Chloe Rees-Spear, Jessica Davies, Monika Patel, Robin Gopal, Luke Muir, Felicity Aiano, Katie J. Doores, J. Yimmy Chow, Shamez N. Ladhani, Maria Zambon, Laura E. McCoy, Mala K. Maini.