BACKGROUND It is unknown whether the risk of kidney disease progression and failure differs between patients with and without genetic kidney disorders.METHODS Three cohorts were evaluated: the prospective Cure Glomerulonephropathy Network (CureGN) and 2 retrospective cohorts from Columbia University, including 5,727 adults and children with kidney disease from any etiology who underwent whole-genome or exome sequencing. The effects of monogenic kidney disorders and APOL1 kidney-risk genotypes on the risk of kidney failure, estimated glomerular filtration rate (eGFR) decline, and disease remission rates were evaluated along with diagnostic yields and the impact of American College of Medical Genetics secondary findings (ACMG SFs).RESULTS Monogenic kidney disorders were identified in 371 patients (6.5%), high-risk APOL1 genotypes in 318 (5.5%), and ACMG SFs in 100 (5.2%). Family history of kidney disease was the strongest predictor of monogenic disorders. After adjustment for traditional risk factors, monogenic kidney disorders were associated with an increased risk of kidney failure (hazard ratio [HR] = 1.72), higher rate of eGFR decline (–3.06 vs. 0.25 mL/min/1.73 m2/year), and lower risk of complete remission (odds ratioNot achieving CR = 5.25). High-risk APOL1 genotypes were associated with an increased risk of kidney failure (HR = 1.67) and faster eGFR decline (–2.28 vs. 0.25 mL/min/1.73 m2), replicating prior findings. ACMG SFs were not associated with personal or family history of associated diseases, but were predicted to impact care in 70% of cases.CONCLUSIONS Monogenic kidney disorders were associated with an increased risk of kidney failure, faster eGFR decline, and lower rates of complete remission, suggesting opportunities for early identification and intervention based on molecular diagnosis.TRIAL REGISTRATION NA.FUNDING National Institute of Diabetes and Digestive and Kidney Diseases grants U24DK100845 (formerly UM1DK100845), U01DK100846 (formerly UM1DK100846), U01DK100876 (formerly UM1DK100876), U01DK100866 (formerly UM1DK100866), U01DK100867 (formerly UM1DK100867), U24DK100845, DK081943, RC2DK116690, 2U01DK100876, 1R01DK136765, 5R01DK082753, and RC2-DK122397; NephCure Kidney International; Department of Defense Research Awards PR201425, W81XWH-16-1-0451, and W81XWH-22-1-0966; National Center for Advancing Translational Sciences grant UL1TR001873; National Library of Medicine grant R01LM013061; National Human Genome Research Institute grant 2U01HG008680.
Mark D. Elliott, Natalie Vena, Maddalena Marasa, Enrico Cocchi, Shiraz Bheda, Kelsie Bogyo, Ning Shang, Francesca Zanoni, Miguel Verbitsky, Chen Wang, Victoria Kolupaeva, Gina Jin, Maayan Sofer, Rafael Gras Pena, Pietro A. Canetta, Andrew S. Bomback, Lisa M. Guay-Woodford, Jean Hou, Brenda W. Gillespie, Bruce M. Robinson, Jon B. Klein, Michelle N. Rheault, William E. Smoyer, Larry A. Greenbaum, Larry B. Holzman, Ronald J. Falk, Afshin Parsa, Simone Sanna-Cherchi, Laura H. Mariani, Matthias Kretzler, Krzysztof Kiryluk, Ali G. Gharavi, CureGN Consortium
Background Cystic kidney disease (CyKD) is a predominantly familial disease in which gene discovery has been led by family-based and candidate gene studies, an approach that is susceptible to ascertainment and other biases. Methods Using whole genome sequencing data from 1,209 cases and 26,096 ancestry-matched controls participating in the 100,000 Genomes Project, we adopted hypothesis-free approaches to generate quantitative estimates of disease risk for each genetic contributor to CyKD, across genes, variant types and allelic frequencies. Results In 82.3% of cases, a qualifying potentially disease-causing rare variant in an established gene was found. There was an enrichment of rare coding, splicing, and structural variants in known CyKD genes, with novel statistically significant gene-based signals in COL4A3 and (monoallelic) PKHD1. Quantification of disease risk for each gene (with replication in the separate UK BioBank study) revealed substantially lower risk associated with genes more recently associated with autosomal dominant polycystic kidney disease, with odds ratios for some below what might usually be regarded as necessary for classical Mendelian inheritance. Meta-analysis of common variants did not reveal significant associations but suggested this category of variation contributes 3-9% to the heritability of CyKD across European ancestries. Conclusion By providing unbiased quantification of risk effects per gene, this research suggests that not all rare variant genetic contributors to CyKD are equally likely to manifest as a Mendelian trait in families. This information may inform genetic testing and counselling in the clinic. Keywords: genomics, cystic kidney disease, renal, ADPKD, WGS
Omid Sadeghi-Alavijeh, Melanie MY. Chan, Gabriel T. Doctor, Catalin D. Voinescu, Alexander Stuckey, Athanasios Kousathanas, Alexander T. Ho, Horia C. Stanescu, Detlef Bockenhauer, Richard N. Sandford, Adam P. Levine, Daniel P. Gale
Benjamin J. Landis, Benjamin M. Helm, Matthew D. Durbin, Lindsey R. Helvaty, Jeremy L. Herrmann, Michael Johansen, Gabrielle C. Geddes, Stephanie M. Ware
Dan Wang, Ania Baghoomian, Zhengyi Zhang, Ya Cui, Emily C. Whang, Xiang Li, Josue Fraga, Rachel Spellman, Tien S. Dong, We Li, Arpana Gupta, Jihane N. Benhammou, Tamer Sallam
Vicente Quiroz, Laura Planas-Serra, Abigail Sveden, Amy Tam, Hyo M. Kim, Umar Zubair, Dario Resch, Afshin Saffari, Matt C. Danzi, Stephan Züchner, Maya Chopra, Luca Schierbaum, Aurora Pujol, Erik A. Eklund, Darius Ebrahimi-Fakhari
Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.
Yang Li, Ke Ma, Zhujun Dong, Shijuan Gao, Jing Zhang, Shan Huang, Jie Yang, Guangming Fang, Yujie Li, Xiaowei Li, Carrie Welch, Emily L. Griffin, Prema Ramaswamy, Zaheer Valivullah, Xiuying Liu, Jianzeng Dong, Dao Wen Wang, Jie Du, Wendy K. Chung, Yulin Li
Osteogenesis imperfecta (OI) type V is the second most common form of OI, distinguished by hyperplastic callus formation and calcification of the interosseous membranes in addition to bone fragility. It is caused by a recurrent, dominant pathogenic variant (c.-14C>T) in IFITM5. Here, we generated a conditional Rosa26 knock-in mouse model to study the mechanistic consequences of the recurrent mutation. Expression of the mutant Ifitm5 in osteo-chondroprogenitor or chondrogenic cells resulted in low bone mass and growth retardation. Mutant limbs showed impaired endochondral ossification, cartilage overgrowth, and abnormal growth plate architecture. The cartilage phenotype correlates with the pathology reported in OI type V patients. Surprisingly, expression of mutant Ifitm5 in mature osteoblasts caused no obvious skeletal abnormalities. In contrast, earlier expression in osteo-chondroprogenitors was associated with increase in the skeletal progenitor population within the periosteum. Lineage tracing showed that chondrogenic cells expressing the mutant Ifitm5 showed decreased differentiation into osteoblastic cells in diaphyseal bone. Moreover, mutant IFITM5 disrupts early skeletal homeostasis in part by activating ERK signaling and downstream SOX9 protein, and inhibition of these pathways partially rescued the phenotype in mutant animals. These data identify the contribution of a signaling defect altering osteo-chondroprogenitor differentiation as a driver in the pathogenesis of OI type V.
Ronit Marom, I-Wen Song, Emily C. Busse, Megan E. Washington, Ava S. Berrier, Vittoria C. Rossi, Laura Ortinau, Youngjae Jeong, Ming-Ming Jiang, Brian C. Dawson, Mary Adeyeye, Carolina Leynes, Caressa D. Lietman, Bridget M. Stroup, Dominyka Batkovskyte, Mahim Jain, Yuqing Chen, Racel Cela, Alexis Castellon, Alyssa A. Tran, Isabel Lorenzo, D. Nicole Meyers, Shixia Huang, Alicia Turner, Vinitha Shenava, Maegen Wallace, Eric Orwoll, Dongsu Park, Catherine G. Ambrose, Sandesh C.S. Nagamani, Jason D. Heaney, Brendan H. Lee
GNAO1 mutated in pediatric encephalopathies encodes the major neuronal G-protein Gαo. Of >80 pathogenic mutations, most are single amino acid substitutions spreading across Gαo sequence. We perform extensive characterization of Gαo mutants showing abnormal GTP uptake and hydrolysis, and deficiencies to bind Gβγ and RGS19. Plasma membrane localization of Gαo is decreased for a subset of mutations that leads to epilepsy; dominant interactions with GPCRs also emerge for the more severe mutants. Pathogenic mutants massively gain interaction with Ric8A and, surprisingly, Ric8B proteins, delocalizing them from cytoplasm to Golgi. Of these two mandatory Gα-subunit chaperones, Ric8A is normally responsible for the Gαi/o, Gαq, and Gα12/13 subfamilies, and Ric8B solely for Gαs/olf. Ric8A/B mediate the disease dominance when engaging in neomorphic interactions with pathogenic Gαo through disbalancing the neuronal G protein signaling networks. As the strength of Gαo-Ric8B interactions correlates with disease severity, our study further identifies an efficient biomarker and predictor for clinical manifestations in GNAO1 encephalopathies. Our work discovers the neomorphic molecular mechanism of mutations underlying pediatric encephalopathies and offers insights to other maladies caused by G protein misfunctioning and further genetic diseases.
Gonzalo P. Solis, Alexey Koval, Jana Valnohova, Arghavan Kazemzadeh, Mikhail Savitsky, Vladimir L. Katanaev
Trisomy 21 (T21), a recurrent aneuploidy occurring in 1:800 births, predisposes to congenital heart disease (CHD) and multiple extracardiac phenotypes. Despite a definitive genetic etiology, the mechanisms by which T21 perturbs development and homeostasis remain poorly understood. We compared the transcriptome of CHD tissues from 49 patients with T21 and 226 with euploid CHD (eCHD). We resolved cell lineages that misexpressed T21 transcripts by cardiac single-nucleus RNA sequencing and RNA in situ hybridization. Compared with eCHD samples, T21 samples had increased chr21 gene expression; 11-fold-greater levels (P = 1.2 × 10–8) of SOST (chr17), encoding the Wnt inhibitor sclerostin; and 1.4-fold-higher levels (P = 8.7 × 10–8) of the SOST transcriptional activator ZNF467 (chr7). Euploid and T21 cardiac endothelial cells coexpressed SOST and ZNF467; however, T21 endothelial cells expressed 6.9-fold more SOST than euploid endothelial cells (P = 2.7 × 10–27). Wnt pathway genes were downregulated in T21 endothelial cells. Expression of DSCAM, residing within the chr21 CHD critical region, correlated with SOST (P = 1.9 × 10–5) and ZNF467 (P = 2.9 × 10–4). Deletion of DSCAM from T21 endothelial cells derived from human induced pluripotent stem cells diminished sclerostin secretion. As Wnt signaling is critical for atrioventricular canal formation, bone health, and pulmonary vascular homeostasis, we concluded that T21-mediated increased sclerostin levels would inappropriately inhibit Wnt activities and promote Down syndrome phenotypes. These findings imply therapeutic potential for anti-sclerostin antibodies in T21.
David M. McKean, Qi Zhang, Priyanka Narayan, Sarah U. Morton, Viktoria Strohmenger, Vi T. Tang, Sophie McAllister, Ananya Sharma, Daniel Quiat, Daniel Reichart, Daniel M. DeLaughter, Hiroko Wakimoto, Joshua M. Gorham, Kemar Brown, Barbara McDonough, Jon A. Willcox, Min Young Jang, Steven R. DePalma, Tarsha Ward, Pediatric Cardiac Genomics Consortium Investigators, Richard Kim, John D. Cleveland, J.G. Seidman, Christine E. Seidman
Primary lymphedema (PL), characterized by tissue swelling, fat accumulation and fibrosis, results from defective lymphatic vessels or valves caused by mutations in genes involved in development, maturation and function of the lymphatic vascular system. Pathogenic variants in various genes have been identified in about 30% of PL cases. By screening of a cohort of 755 individuals with PL, we identified two TIE1 (tyrosine kinase with immunoglobulin- and epidermal growth factor-like domains 1) missense variants and one truncating variant, all predicted to be pathogenic by bioinformatic algorithms. The TIE1 receptor, in complex with TIE2, binds angiopoietins to regulate the formation and remodelling of blood and lymphatic vessels. The premature stop codon mutant encoded an inactive truncated extracellular TIE1 fragment with decreased mRNA stability and the amino acid substitutions led to decreased TIE1 signaling activity. By reproducing the two missense variants in mouse Tie1 via CRISPR-Cas9, we showed that both cause edema and are lethal in homozygous mice. Thus, our results indicate that TIE1 loss-of-function variants can cause lymphatic dysfunction in patients. Together with our earlier demonstration that ANGPT2 loss-of-function mutations can also cause PL, our results emphasize the important role of the ANGPT2-TIE1 pathway in lymphatic function.
Pascal Brouillard, Aino Murtomäki, Veli-Matti Leppänen, Marko Hyytiäinen, Sandrine Mestre, Lucas Potier, Laurence M. Boon, Nicole Revencu, Arin K. Greene, Andrey Anisimov, Miia H. Salo, Reetta Hinttala, Lauri Eklund, Isabelle Quéré, Kari Alitalo, Miikka Vikkula