Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Endocrinology

  • 207 Articles
  • 5 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • Next →
Insulin’s direct effects on the liver dominate the control of hepatic glucose production
Dale S. Edgerton, … , Chang A. Chu, Alan D. Cherrington
Dale S. Edgerton, … , Chang A. Chu, Alan D. Cherrington
Published February 1, 2006
Citation Information: J Clin Invest. 2006;116(2):521-527. https://doi.org/10.1172/JCI27073.
View: Text | PDF

Insulin’s direct effects on the liver dominate the control of hepatic glucose production

  • Text
  • PDF
Abstract

Insulin inhibits glucose production through both direct and indirect effects on the liver; however, considerable controversy exists regarding the relative importance of these effects. The first aim of this study was to determine which of these processes dominates the acute control of hepatic glucose production (HGP). Somatostatin and portal vein infusions of insulin and glucagon were used to clamp the pancreatic hormones at basal levels in the nondiabetic dog. After a basal sampling period, insulin infusion was switched from the portal vein to a peripheral vein. As a result, the arterial insulin level doubled and the hepatic sinusoidal insulin level was reduced by half. While the arterial plasma FFA level and net hepatic FFA uptake fell by 40–50%, net hepatic glucose output increased more than 2-fold and remained elevated compared with that in the control group. The second aim of this study was to determine the effect of a 4-fold rise in head insulin on HGP during peripheral hyperinsulinemia and hepatic insulin deficiency. Sensitivity of the liver was not enhanced by increased insulin delivery to the head. Thus, this study demonstrates that the direct effects of insulin dominate the acute regulation of HGP in the normal dog.

Authors

Dale S. Edgerton, Margaret Lautz, Melanie Scott, Carrie A. Everett, Kathryn M. Stettler, Doss W. Neal, Chang A. Chu, Alan D. Cherrington

×

Negative regulation by thyroid hormone receptor requires an intact coactivator-binding surface
Tania M. Ortiga-Carvalho, … , Samuel Refetoff, Fredric E. Wondisford
Tania M. Ortiga-Carvalho, … , Samuel Refetoff, Fredric E. Wondisford
Published September 1, 2005
Citation Information: J Clin Invest. 2005;115(9):2517-2523. https://doi.org/10.1172/JCI24109.
View: Text | PDF

Negative regulation by thyroid hormone receptor requires an intact coactivator-binding surface

  • Text
  • PDF
Abstract

Thyroid hormone (TH) action is mediated by TH receptors (TRs), which are members of the nuclear hormone receptor superfamily. In vitro studies have demonstrated that TR activity is regulated by interactions with corepressor and coactivator proteins (CoRs and CoAs, respectively). TH stimulation is thought to involve dissociation of CoRs and recruitment of CoAs to the liganded TR. In contrast, negative regulation by TH is thought to occur via recruitment of CoRs to the liganded TR. The physiological role of CoAs bound to TRs, however, has yet to be defined. In this study, we used gene-targeting techniques to mutate the TR-β locus within its activation function–2 (AF-2) domain (E457A). This mutation was chosen because it completely abolished CoA recruitment in vitro, while preserving normal triiodothyronine (T3) binding and CoR interactions. As expected, TH-stimulated gene expression was reduced in homozygous E457A mice. However, these animals also displayed abnormal regulation of the hypothalamic-pituitary-thyroid axis. Serum thyroxine, T3, and thyroid-stimulating hormone (TSH) levels and pituitary Tshb mRNA levels were inappropriately elevated compared with those of WT animals, and L-T3 treatment failed to suppress serum TSH and pituitary Tshb mRNA levels. Therefore, the AF-2 domain of TR-β is required for positive and, paradoxically, for negative regulation by TH in vivo.

Authors

Tania M. Ortiga-Carvalho, Nobuyuki Shibusawa, Amisra Nikrodhanond, Karen J. Oliveira, Danielle S. Machado, Xiao-Hui Liao, Ronald N. Cohen, Samuel Refetoff, Fredric E. Wondisford

×

Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans
Ana Luiza Maia, … , John W. Harney, P. Reed Larsen
Ana Luiza Maia, … , John W. Harney, P. Reed Larsen
Published September 1, 2005
Citation Information: J Clin Invest. 2005;115(9):2524-2533. https://doi.org/10.1172/JCI25083.
View: Text | PDF

Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans

  • Text
  • PDF
Abstract

The relative roles of the types 1 and 2 iodothyronine deiodinases (D1 and D2) in extrathyroidal 3,5,3′-triiodothyronine (T3) production in humans are unknown. We calculated the rate of thyroxine (T4) to T3 conversion by intact cells transiently expressing D1 or D2 at low (2 pM), normal (20 pM), and high (200 pM) free T4 concentrations. Deiodinase activities were then assayed in cell sonicates. The ratio of T3 production in cell sonicates (catalytic efficiency) was multiplied by the tissue activities reported in human liver (D1) and skeletal muscle (D2). From these calculations, we predict that in euthyroid humans, D2-generated T3 is 29 nmol/d, while that of D1-generated T3 is 15 nmol/d, from these major deiodinase-expressing tissues. The total estimated extrathyroidal T3 production, 44 nmol/d, is in close agreement with the 40 nmol T3/d based on previous kinetic studies. D2-generated T3 production accounts for approximately 71% of the peripheral T3 production in hypothyroidism, but D1 for approximately 67% in thyrotoxic patients. We also show that the intracellular D2-generated T3 has a greater effect on T3-dependent gene transcription than that from D1, which indicates that generation of nuclear T3 is an intrinsic property of the D2 protein. We suggest that impairment of D2-generated T3 is the major cause of the reduced T3 production in the euthyroid sick syndrome.

Authors

Ana Luiza Maia, Brian W. Kim, Stephen A. Huang, John W. Harney, P. Reed Larsen

×

Intensive insulin therapy protects the endothelium of critically ill patients
Lies Langouche, … , Troels K. Hansen, Greet Van den Berghe
Lies Langouche, … , Troels K. Hansen, Greet Van den Berghe
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2277-2286. https://doi.org/10.1172/JCI25385.
View: Text | PDF

Intensive insulin therapy protects the endothelium of critically ill patients

  • Text
  • PDF
Abstract

The vascular endothelium controls vasomotor tone and microvascular flow and regulates trafficking of nutrients and biologically active molecules. When endothelial activation is excessive, compromised microcirculation and subsequent cellular hypoxia contribute to the risk of organ failure. We hypothesized that strict blood glucose control with insulin during critical illness protects the endothelium, mediating prevention of organ failure and death. In this preplanned subanalysis of a large, randomized controlled study, intensive insulin therapy lowered circulating levels of ICAM-1 and tended to reduce E-selectin levels in patients with prolonged critical illness, which reflects reduced endothelial activation. This effect was not brought about by altered levels of endothelial stimuli, such as cytokines or VEGF, or by upregulation of eNOS. In contrast, prevention of hyperglycemia by intensive insulin therapy suppressed iNOS gene expression in postmortem liver and skeletal muscle, possibly in part via reduced NF-κB activation, and lowered the elevated circulating NO levels in both survivors and nonsurvivors. These effects on the endothelium statistically explained a significant part of the improved patient outcome with intensive insulin therapy. In conclusion, maintaining normoglycemia with intensive insulin therapy during critical illness protects the endothelium, likely in part via inhibition of excessive iNOS-induced NO release, and thereby contributes to prevention of organ failure and death.

Authors

Lies Langouche, Ilse Vanhorebeek, Dirk Vlasselaers, Sarah Vander Perre, Pieter J. Wouters, Kristin Skogstrand, Troels K. Hansen, Greet Van den Berghe

×

Fertility in luteinizing hormone receptor-knockout mice after wild-type ovary transplantation demonstrates redundancy of extragonadal luteinizing hormone action
Tomi Pakarainen, … , Matti Poutanen, Ilpo Huhtaniemi
Tomi Pakarainen, … , Matti Poutanen, Ilpo Huhtaniemi
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1862-1868. https://doi.org/10.1172/JCI24562.
View: Text | PDF

Fertility in luteinizing hormone receptor-knockout mice after wild-type ovary transplantation demonstrates redundancy of extragonadal luteinizing hormone action

  • Text
  • PDF
Abstract

The luteinizing hormone receptor (LHR), mainly expressed in gonads, is essential for normal reproduction. However, numerous recent studies have also demonstrated LHR expression in multiple extragonadal reproductive and nonreproductive tissues. Although some effects of luteinizing hormone (LH) or its agonist, human chorionic gonadotropin, have been shown in extragonadal sites, their physiological significance remains open. In the present study, we have addressed the function of the extragonadal LHR using LHR-KO mice (LuRKO mice), in which the ovaries of prepubertal mice were orthotopically replaced with pieces of WT ovary using similarly transplanted WT mice as controls. Most ovarian transplants attained normal endocrine function in both groups of mice, as demonstrated by normal age at vaginal opening, estrous cycles, and sexual behavior. Both the LuRKO and WT mice repeatedly became pregnant (9/16 vs. 16/20 after first mating; difference not significant) and delivered similarly sized litters, which grew normally after birth, indicating normal lactation. In conclusion, fertility is restored in LuRKO mice by transplantation of WT ovarian tissue. This is achieved in the absence of extragonadal LHR expression, which indicates physiological redundancy for such receptor sites.

Authors

Tomi Pakarainen, Fu-Ping Zhang, Matti Poutanen, Ilpo Huhtaniemi

×

SOCS2 negatively regulates growth hormone action in vitro and in vivo
Christopher J. Greenhalgh, … , Warren S. Alexander, Douglas J. Hilton
Christopher J. Greenhalgh, … , Warren S. Alexander, Douglas J. Hilton
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):397-406. https://doi.org/10.1172/JCI22710.
View: Text | PDF

SOCS2 negatively regulates growth hormone action in vitro and in vivo

  • Text
  • PDF
Abstract

Mice deficient in SOCS2 display an excessive growth phenotype characterized by a 30–50% increase in mature body size. Here we show that the SOCS2–/– phenotype is dependent upon the presence of endogenous growth hormone (GH) and that treatment with exogenous GH induced excessive growth in mice lacking both endogenous GH and SOCS2. This was reflected in terms of overall body weight, body and bone lengths, and the weight of internal organs and tissues. A heightened response to GH was also measured by examining GH-responsive genes expressed in the liver after exogenous GH administration. To further understand the link between SOCS2 and the GH-signaling cascade, we investigated the nature of these interactions using structure/function and biochemical interaction studies. Analysis of the 3 structural motifs of the SOCS2 molecule revealed that each plays a crucial role in SOCS2 function, with the conserved SOCS-box motif being essential for all inhibitory function. SOCS2 was found to bind 2 phosphorylated tyrosines on the GH receptor, and mutational analysis of these amino acids showed that both were essential for SOCS2 function. Together, the data provide clear evidence that SOCS2 is a negative regulator of GH signaling.

Authors

Christopher J. Greenhalgh, Elizabeth Rico-Bautista, Mattias Lorentzon, Anne L. Thaus, Phillip O. Morgan, Tracy A. Willson, Panagiota Zervoudakis, Donald Metcalf, Ian Street, Nicos A. Nicola, Andrew D. Nash, Louis J. Fabri, Gunnar Norstedt, Claes Ohlsson, Amilcar Flores-Morales, Warren S. Alexander, Douglas J. Hilton

×

Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia
Jean Marc Pascussi, … , Patrick Maurel, Marie Josè Vilarem
Jean Marc Pascussi, … , Patrick Maurel, Marie Josè Vilarem
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):177-186. https://doi.org/10.1172/JCI21867.
View: Text | PDF

Possible involvement of pregnane X receptor–enhanced CYP24 expression in drug-induced osteomalacia

  • Text
  • PDF
Abstract

Vitamin D controls calcium homeostasis and the development and maintenance of bones through vitamin D receptor activation. Prolonged therapy with rifampicin or phenobarbital has been shown to cause vitamin D deficiency or osteomalacia, particularly in patients with marginal vitamin D stores. However, the molecular mechanism of this process is unknown. Here we show that these drugs lead to the upregulation of 25-hydroxyvitamin D3-24-hydroxylase (CYP24) gene expression through the activation of the nuclear receptor pregnane X receptor (PXR; NR1I2). CYP24 is a mitochondrial enzyme responsible for inactivating vitamin D metabolites. CYP24 mRNA is upregulated in vivo in mice by pregnenolone 16α-carbonitrile and dexamethasone, 2 murine PXR agonists, and in vitro in human hepatocytes by rifampicin and hyperforin, 2 human PXR agonists. Moreover, rifampicin increased 24-hydroxylase activity in these cells, while, in vivo in mice, pregnenolone 16α-carbonitrile increased the plasma concentration of 24,25-dihydroxyvitamin D3. Transfection of PXR in human embryonic kidney cells resulted in rifampicin-mediated induction of CYP24 mRNA. Analysis of the human CYP24 promoter showed that PXR transactivates the sequence between –326 and –142. We demonstrated that PXR binds to and transactivates the 2 proximal vitamin D–responsive elements of the human CYP24 promoter. These data suggest that xenobiotics and drugs can modulate CYP24 gene expression and alter vitamin D3 hormonal activity and calcium homeostasis through the activation of PXR.

Authors

Jean Marc Pascussi, Agnes Robert, Minh Nguyen, Odile Walrant-Debray, Michèle Garabedian, Pascal Martin, Thierry Pineau, Jean Saric, Fréderic Navarro, Patrick Maurel, Marie Josè Vilarem

×

Central and peripheral actions of somatostatin on the growth hormone–IGF-I axis
Robert D. Murray, … , Yutaka Umehara, Shlomo Melmed
Robert D. Murray, … , Yutaka Umehara, Shlomo Melmed
Published August 1, 2004
Citation Information: J Clin Invest. 2004;114(3):349-356. https://doi.org/10.1172/JCI19933.
View: Text | PDF

Central and peripheral actions of somatostatin on the growth hormone–IGF-I axis

  • Text
  • PDF
Abstract

Somatostatin (SRIF) analogs provide safe and effective therapy for acromegaly. In a proportion of patients, however, SRIF analogs may lead to discordant growth hormone (GH) and IGF-I suppression, which suggests a more complex mechanism than attributable to inhibition of GH release alone. To elucidate whether SRIF acts peripherally on the GH–IGF-I axis, we showed that rat hepatocytes express somatostatin receptor subtypes-2 and -3 and that IGF-I mRNA and protein levels were suppressed in a dose-dependent manner by administration of octreotide. The inhibitory effect of SRIF was not apparent without added GH and in the presence of GH was specific for IGF-I induction and did not inhibit GH-induced c-myc or extracellular signal regulated kinase (ERK) phosphorylation. Pertussis toxin treatment of hepatocytes incubated with GH and SRIF, or with GH and octreotide, abrogated the inhibitory effect on GH-induced IGF-I, which confirms the requirement for the inhibitory G-protein. Treatment with SRIF and GH increased protein tyrosine phosphatase (PTP) activity and inhibited signal transducer and activator of transcription-5b (STAT5b) phosphorylation and nuclear localization. Octreotide also inhibited GH-stimulated IGF-I protein content of ex vivo–perfused rat livers. The results demonstrate that SRIF acts both centrally and peripherally to control the GH–IGF-I axis, providing a mechanistic explanation for SRIF analog action in treating patients with GH-secreting pituitary adenomas.

Authors

Robert D. Murray, Kiwon Kim, Song-Guang Ren, Marjorie Chelly, Yutaka Umehara, Shlomo Melmed

×

Concentration-dependent regulation of thyrotropin receptor function by thyroid-stimulating antibody
Takao Ando, … , Rauf Latif, Terry F. Davies
Takao Ando, … , Rauf Latif, Terry F. Davies
Published June 1, 2004
Citation Information: J Clin Invest. 2004;113(11):1589-1595. https://doi.org/10.1172/JCI21334.
View: Text | PDF

Concentration-dependent regulation of thyrotropin receptor function by thyroid-stimulating antibody

  • Text
  • PDF
Abstract

Thyrotropin receptor (TSHR) Ab’s of the stimulating variety are the cause of hyperthyroid Graves disease. MS-1 is a hamster mAb with TSHR-stimulating activity. To examine the in vivo biological activity of MS-1, mice were treated with purified MS-1 intraperitoneally and the thyroid response evaluated. MS-1 induced a dose-dependent increase in serum thyroxine (T4), with a maximum effect after 10 ∝g of MS-1 was administered. MS-1–secreting hybridoma cells were then transferred into the peritoneum of nude mice to study chronic thyroid stimulation. Serum MS-1 levels detected after 2 weeks were approximately 10–50 ∝g/ml, and the serum TSH was suppressed in all animals. Serum triiodothyronine levels were elevated, but only in animals with low serum MS-1 concentrations. In addition, there was a negative correlation between serum T4 and the serum MS-1 concentrations. These in vivo studies suggested a partial TSHR inactivation induced by excessive stimulation by MS-1. We confirmed this inactivation by demonstrating MS-1 modulation of TSHR function in vitro as evidenced by downregulation and desensitization of the TSHR at concentrations of MS-1 achieved in the in vivo studies. Thus, inactivation of the TSHR by stimulating TSHR autoantibodies (TSHR-Ab’s) in Graves disease patients may provide a functional explanation for the poor correlation between thyroid function and serum TSHR-Ab concentrations.

Authors

Takao Ando, Rauf Latif, Terry F. Davies

×

Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
Takashi Shimada, … , Kazuma Tomizuka, Takeyoshi Yamashita
Takashi Shimada, … , Kazuma Tomizuka, Takeyoshi Yamashita
Published February 15, 2004
Citation Information: J Clin Invest. 2004;113(4):561-568. https://doi.org/10.1172/JCI19081.
View: Text | PDF

Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism

  • Text
  • PDF
Abstract

Inorganic phosphate is essential for ECM mineralization and also as a constituent of important molecules in cellular metabolism. Investigations of several hypophosphatemic diseases indicated that a hormone-like molecule probably regulates serum phosphate concentration. FGF23 has recently been recognized as playing important pathophysiological roles in several hypophosphatemic diseases. We present here the evidence that FGF23 is a physiological regulator of serum phosphate and 1,25-dihydroxyvitamin D (1,25[OH]2D) by generating FGF23-null mice. Disruption of the Fgf23 gene did not result in embryonic lethality, although homozygous mice showed severe growth retardation with abnormal bone phenotype and markedly short life span. The Fgf23–/– mice displayed significantly high serum phosphate with increased renal phosphate reabsorption. They also showed an elevation in serum 1,25(OH)2D that was due to the enhanced expression of renal 25-hydroxyvitamin D-1α-hydroxylase (1α-OHase) from 10 days of age. These phenotypes could not be explained by currently known regulators of mineral homeostasis, indicating that FGF23 is essential for normal phosphate and vitamin D metabolism.

Authors

Takashi Shimada, Makoto Kakitani, Yuji Yamazaki, Hisashi Hasegawa, Yasuhiro Takeuchi, Toshiro Fujita, Seiji Fukumoto, Kazuma Tomizuka, Takeyoshi Yamashita

×
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • Next →
Dynamin 2 prevents insulin granule traffic jams
Fan Fan and colleagues demonstrate that dynamin 2 is important for maintaining insulin secretion dynamics in β cells…
Published September 28, 2015
Scientific Show StopperEndocrinology

UPR stress gets β cells going
Rohit Sharma and colleagues reveal that insulin demand-induced β cell proliferation is regulated by the unfolded protein response…
Published September 21, 2015
Scientific Show StopperEndocrinology

Restricting β cell growth
Sung Hee Um and colleagues reveal that S6K1-dependent alterations of β cell size and function are independent of intrauterine growth restriction…
Published June 15, 2015
Scientific Show StopperEndocrinology

Insight into Kallmann syndrome
Anna Cariboni and colleagues demonstrate that dysfunctional SEMA3E results in gonadotropin-releasing hormone neuron deficiency…
Published May 18, 2015
Scientific Show StopperEndocrinology

L cells to the rescue
Natalia Peterson and colleagues demonstrate that increasing L cell populations in the gut improves insulin responses and glucose tolerance in a murine type 2 diabetes model…
Published December 15, 2014
Scientific Show StopperEndocrinology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts