Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Cell biology

  • 209 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • Next →
Axial tubule junctions control rapid calcium signaling in atria
Sören Brandenburg, … , W. Jonathan Lederer, Stephan E. Lehnart
Sören Brandenburg, … , W. Jonathan Lederer, Stephan E. Lehnart
Published September 19, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI88241.
View: Text | PDF

Axial tubule junctions control rapid calcium signaling in atria

  • Text
  • PDF
Abstract

The canonical atrial myocyte (AM) is characterized by sparse transverse tubule (TT) invaginations and slow intracellular Ca2+ propagation but exhibits rapid contractile activation that is susceptible to loss of function during hypertrophic remodeling. Here, we have identified a membrane structure and Ca2+-signaling complex that may enhance the speed of atrial contraction independently of phospholamban regulation. This axial couplon was observed in human and mouse atria and is composed of voluminous axial tubules (ATs) with extensive junctions to the sarcoplasmic reticulum (SR) that include ryanodine receptor 2 (RyR2) clusters. In mouse AM, AT structures triggered Ca2+ release from the SR approximately 2 times faster at the AM center than at the surface. Rapid Ca2+ release correlated with colocalization of highly phosphorylated RyR2 clusters at AT-SR junctions and earlier, more rapid shortening of central sarcomeres. In contrast, mice expressing phosphorylation-incompetent RyR2 displayed depressed AM sarcomere shortening and reduced in vivo atrial contractile function. Moreover, left atrial hypertrophy led to AT proliferation, with a marked increase in the highly phosphorylated RyR2-pS2808 cluster fraction, thereby maintaining cytosolic Ca2+ signaling despite decreases in RyR2 cluster density and RyR2 protein expression. AT couplon “super-hubs” thus underlie faster excitation-contraction coupling in health as well as hypertrophic compensatory adaptation and represent a structural and metabolic mechanism that may contribute to contractile dysfunction and arrhythmias.

Authors

Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer, Stephan E. Lehnart

×

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin
Jianing Xu, … , Emily H. Cheng, James J. Hsieh
Jianing Xu, … , Emily H. Cheng, James J. Hsieh
Published August 2, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI86120.
View: Text | PDF

Mechanistically distinct cancer-associated mTOR activation clusters predict sensitivity to rapamycin

  • Text
  • PDF
Abstract

Genomic studies have linked mTORC1 pathway–activating mutations with exceptional response to treatment with allosteric inhibitors of mTORC1 called rapalogs. Rapalogs are approved for selected cancer types, including kidney and breast cancers. Here, we used sequencing data from 22 human kidney cancer cases to identify the activating mechanisms conferred by mTOR mutations observed in human cancers and advance precision therapeutics. mTOR mutations that clustered in focal adhesion kinase targeting domain (FAT) and kinase domains enhanced mTORC1 kinase activity, decreased nutrient reliance, and increased cell size. We identified 3 distinct mechanisms of hyperactivation, including reduced binding to DEP domain–containing MTOR-interacting protein (DEPTOR), resistance to regulatory associated protein of mTOR–mediated (RAPTOR-mediated) suppression, and altered kinase kinetics. Of the 28 mTOR double mutants, activating mutations could be divided into 6 complementation groups, resulting in synergistic Rag- and Ras homolog enriched in brain–independent (RHEB-independent) mTORC1 activation. mTOR mutants were resistant to DNA damage–inducible transcript 1–mediated (REDD1-mediated) inhibition, confirming that activating mutations can bypass the negative feedback pathway formed between HIF1 and mTORC1 in the absence of von Hippel–Lindau (VHL) tumor suppressor expression. Moreover, VHL-deficient cells that expressed activating mTOR mutants grew tumors that were sensitive to rapamycin treatment. These data may explain the high incidence of mTOR mutations observed in clear cell kidney cancer, where VHL loss and HIF activation is pathognomonic. Our study provides mechanistic and therapeutic insights concerning mTOR mutations in human diseases.

Authors

Jianing Xu, Can G. Pham, Steven K. Albanese, Yiyu Dong, Toshinao Oyama, Chung-Han Lee, Vanessa Rodrik-Outmezguine, Zhan Yao, Song Han, David Chen, Daniel L. Parton, John D. Chodera, Neal Rosen, Emily H. Cheng, James J. Hsieh

×

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1
Rinske Drost, … , Peter Bouwman, Jos Jonkers
Rinske Drost, … , Peter Bouwman, Jos Jonkers
Published July 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI70196.
View: Text | PDF

BRCA1185delAG tumors may acquire therapy resistance through expression of RING-less BRCA1

  • Text
  • PDF
Abstract

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain–less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.

Authors

Rinske Drost, Kiranjit K. Dhillon, Hanneke van der Gulden, Ingrid van der Heijden, Inger Brandsma, Cristina Cruz, Dafni Chondronasiou, Marta Castroviejo-Bermejo, Ute Boon, Eva Schut, Eline van der Burg, Ellen Wientjens, Mark Pieterse, Christiaan Klijn, Sjoerd Klarenbeek, Fabricio Loayza-Puch, Ran Elkon, Liesbeth van Deemter, Sven Rottenberg, Marieke van de Ven, Dick H.W. Dekkers, Jeroen A.A. Demmers, Dik C. van Gent, Reuven Agami, Judith Balmaña, Violeta Serra, Toshiyasu Taniguchi, Peter Bouwman, Jos Jonkers

×

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis
Ting Xie, … , Dianhua Jiang, Paul W. Noble
Ting Xie, … , Dianhua Jiang, Paul W. Noble
Published July 11, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85328.
View: Text | PDF | Corrigendum

Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis

  • Text
  • PDF
Abstract

Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis.

Authors

Ting Xie, Jiurong Liang, Ningshan Liu, Caijuan Huan, Yanli Zhang, Weijia Liu, Maya Kumar, Rui Xiao, Jeanine D’Armiento, Daniel Metzger, Pierre Chambon, Virginia E. Papaioannou, Barry R. Stripp, Dianhua Jiang, Paul W. Noble

×

CKAP4 is a Dickkopf1 receptor and is involved in tumor progression
Hirokazu Kimura, … , Eiichi Morii, Akira Kikuchi
Hirokazu Kimura, … , Eiichi Morii, Akira Kikuchi
Published June 20, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84658.
View: Text | PDF

CKAP4 is a Dickkopf1 receptor and is involved in tumor progression

  • Text
  • PDF
Abstract

Dickkopf1 (DKK1) is a secretory protein that antagonizes oncogenic Wnt signaling by binding to the Wnt coreceptor low-density lipoprotein receptor–related protein 6 (LRP6). DKK1 may also regulate its own signaling to promote cancer cell proliferation, but the mechanism is not understood. Here, we identified cytoskeleton-associated protein 4 (CKAP4) as a DKK1 receptor and evaluated CKAP4-mediated DKK1 signaling in cancer cell proliferation. We determined that DKK1 binds CKAP4 and LRP6 with similar affinity but interacts with these 2 receptors with different cysteine-rich domains. DKK1 induced internalization of CKAP4 in a clathrin-dependent manner, further supporting CKAP4 as a receptor for DKK1. DKK1/CKAP4 signaling activated AKT by forming a complex between the proline-rich domain of CKAP4 and the Src homology 3 domain of PI3K, resulting in proliferation of normal cells and cancer cells. Expression of DKK1 and CKAP4 was frequent in tumor lesions of human pancreatic and lung cancers, and simultaneous expression of both proteins in patient tumors was negatively correlated with prognosis and relapse-free survival. An anti-CKAP4 antibody blocked the binding of DKK1 to CKAP4, suppressed AKT activity in a human cancer cell line, and attenuated xenograft tumor formation in immunodeficient mice. Together, our results suggest that CKAP4 is a potential therapeutic target for cancers that express both DKK1 and CKAP4.

Authors

Hirokazu Kimura, Katsumi Fumoto, Kensaku Shojima, Satoshi Nojima, Yoshihito Osugi, Hideo Tomihara, Hidetoshi Eguchi, Yasushi Shintani, Hiroko Endo, Masahiro Inoue, Yuichiro Doki, Meinoshin Okumura, Eiichi Morii, Akira Kikuchi

×

Schwann cells induce cancer cell dispersion and invasion
Sylvie Deborde, … , Alan Hall, Richard J. Wong
Sylvie Deborde, … , Alan Hall, Richard J. Wong
Published March 21, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82658.
View: Text | PDF

Schwann cells induce cancer cell dispersion and invasion

  • Text
  • PDF
Abstract

Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression.

Authors

Sylvie Deborde, Tatiana Omelchenko, Anna Lyubchik, Yi Zhou, Shizhi He, William F. McNamara, Natalya Chernichenko, Sei-Young Lee, Fernando Barajas, Chun-Hao Chen, Richard L. Bakst, Efsevia Vakiani, Shuangba He, Alan Hall, Richard J. Wong

×

Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis
Thomas R. Lerner, … , Gareth Griffiths, Maximiliano G. Gutierrez
Thomas R. Lerner, … , Gareth Griffiths, Maximiliano G. Gutierrez
Published February 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83379.
View: Text | PDF

Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis

  • Text
  • PDF
Abstract

In extrapulmonary tuberculosis, the most common site of infection is within the lymphatic system, and there is growing recognition that lymphatic endothelial cells (LECs) are involved in immune function. Here, we identified LECs, which line the lymphatic vessels, as a niche for Mycobacterium tuberculosis in the lymph nodes of patients with tuberculosis. In cultured primary human LECs (hLECs), we determined that M. tuberculosis replicates both in the cytosol and within autophagosomes, but the bacteria failed to replicate when the virulence locus RD1 was deleted. Activation by IFN-γ induced a cell-autonomous response in hLECs via autophagy and NO production that restricted M. tuberculosis growth. Thus, depending on the activation status of LECs, autophagy can both promote and restrict replication. Together, these findings reveal a previously unrecognized role for hLECs and autophagy in tuberculosis pathogenesis and suggest that hLECs are a potential niche for M. tuberculosis that allows establishment of persistent infection in lymph nodes.

Authors

Thomas R. Lerner, Cristiane de Souza Carvalho-Wodarz, Urska Repnik, Matthew R.G. Russell, Sophie Borel, Collin R. Diedrich, Manfred Rohde, Helen Wainwright, Lucy M. Collinson, Robert J. Wilkinson, Gareth Griffiths, Maximiliano G. Gutierrez

×

Xenotropic retrovirus Bxv1 in human pancreatic β cell lines
Jeannette S. Kirkegaard, … , Claude Rescan, Olivier Albagli
Jeannette S. Kirkegaard, … , Claude Rescan, Olivier Albagli
Published February 22, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83573.
View: Text | PDF

Xenotropic retrovirus Bxv1 in human pancreatic β cell lines

  • Text
  • PDF
Abstract

It has been reported that endogenous retroviruses can contaminate human cell lines that have been passaged as xenotransplants in immunocompromised mice. We previously developed and described 2 human pancreatic β cell lines (EndoC-βH1 and EndoC-βH2) that were generated in this way. Here, we have shown that B10 xenotropic virus 1 (Bxv1), a xenotropic endogenous murine leukemia virus (MuLV), is present in these 2 recently described cell lines. We determined that Bxv1 was also present in SCID mice that were used for in vivo propagation of EndoC-βH1/2 cells, suggesting that contamination occurred during xenotransplantation. EndoC-βH1/2 cells released Bxv1 particles that propagated to human 293T and Mus dunni cells. Mobilization assays demonstrated that Bxv1 transcomplements defective MuLV-based retrovectors. In contrast, common rodent β cell lines, rat INS-1E and RIN-5F cells and mouse MIN6 and βTC3 cells, displayed either no or extremely weak xenotropic helper activity toward MuLV-based retrovectors, although xenotropic retrovirus sequences and transcripts were detected in both mouse cell lines. Bxv1 propagation from EndoC-βH1/2 to 293T cells occurred only under optimized conditions and was overall poorly efficient. Thus, although our data imply that MuLV-based retrovectors should be cautiously used in EndoC-βH1/2 cells, our results indicate that an involuntary propagation of Bxv1 from these cells can be easily avoided with good laboratory practices.

Authors

Jeannette S. Kirkegaard, Philippe Ravassard, Signe Ingvarsen, Marc Diedisheim, Emilie Bricout-Neveu, Mads Grønborg, Thomas Frogne, Raphael Scharfmann, Ole D. Madsen, Claude Rescan, Olivier Albagli

×

Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies
Sergio Gonzalez, … , Guy Lenaers, Nicolas Tricaud
Sergio Gonzalez, … , Guy Lenaers, Nicolas Tricaud
Published February 15, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84505.
View: Text | PDF | Corrigendum | Expression of Concern | Retraction

Blocking mitochondrial calcium release in Schwann cells prevents demyelinating neuropathies

  • Text
  • PDF
Abstract

Schwann cells produce myelin sheath around peripheral nerve axons. Myelination is critical for rapid propagation of action potentials, as illustrated by the large number of acquired and hereditary peripheral neuropathies, such as diabetic neuropathy or Charcot-Marie-Tooth diseases, that are commonly associated with a process of demyelination. However, the early molecular events that trigger the demyelination program in these diseases remain unknown. Here, we used virally delivered fluorescent probes and in vivo time-lapse imaging in a mouse model of demyelination to investigate the underlying mechanisms of the demyelination process. We demonstrated that mitochondrial calcium released by voltage-dependent anion channel 1 (VDAC1) after sciatic nerve injury triggers Schwann cell demyelination via ERK1/2, p38, JNK, and c-JUN activation. In diabetic mice, VDAC1 activity was altered, resulting in a mitochondrial calcium leak in Schwann cell cytoplasm, thereby priming the cell for demyelination. Moreover, reduction of mitochondrial calcium release, either by shRNA-mediated VDAC1 silencing or pharmacological inhibition, prevented demyelination, leading to nerve conduction and neuromuscular performance recovery in rodent models of diabetic neuropathy and Charcot-Marie-Tooth diseases. Therefore, this study identifies mitochondria as the early key factor in the molecular mechanism of peripheral demyelination and opens a potential opportunity for the treatment of demyelinating peripheral neuropathies.

Authors

Sergio Gonzalez, Jade Berthelot, Jennifer Jiner, Claire Perrin-Tricaud, Ruani Fernando, Roman Chrast, Guy Lenaers, Nicolas Tricaud

×

GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation
Makoto Shigeto, … , Graham Ladds, Patrik Rorsman
Makoto Shigeto, … , Graham Ladds, Patrik Rorsman
Published November 16, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI81975.
View: Text | PDF

GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation

  • Text
  • PDF
Abstract

Strategies aimed at mimicking or enhancing the action of the incretin hormone glucagon-like peptide 1 (GLP-1) therapeutically improve glucose-stimulated insulin secretion (GSIS); however, it is not clear whether GLP-1 directly drives insulin secretion in pancreatic islets. Here, we examined the mechanisms by which GLP-1 stimulates insulin secretion in mouse and human islets. We found that GLP-1 enhances GSIS at a half-maximal effective concentration of 0.4 pM. Moreover, we determined that GLP-1 activates PLC, which increases submembrane diacylglycerol and thereby activates PKC, resulting in membrane depolarization and increased action potential firing and subsequent stimulation of insulin secretion. The depolarizing effect of GLP-1 on electrical activity was mimicked by the PKC activator PMA, occurred without activation of PKA, and persisted in the presence of PKA inhibitors, the KATP channel blocker tolbutamide, and the L-type Ca2+ channel blocker isradipine; however, depolarization was abolished by lowering extracellular Na+. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na+-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca2+ from thapsigargin-sensitive Ca2+ stores. Concordantly, GLP-1 effects were negligible in Trpm4 or Trpm5 KO islets. These data provide important insight into the therapeutic action of GLP-1 and suggest that circulating levels of this hormone directly stimulate insulin secretion by β cells.

Authors

Makoto Shigeto, Reshma Ramracheya, Andrei I. Tarasov, Chae Young Cha, Margarita V. Chibalina, Benoit Hastoy, Koenraad Philippaert, Thomas Reinbothe, Nils Rorsman, Albert Salehi, William R. Sones, Elisa Vergari, Cathryn Weston, Julia Gorelik, Masashi Katsura, Viacheslav O. Nikolaev, Rudi Vennekens, Manuela Zaccolo, Antony Galione, Paul R.V. Johnson, Kohei Kaku, Graham Ladds, Patrik Rorsman

×
  • ← Previous
  • 1
  • 2
  • …
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts