Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Aging

  • 127 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 12
  • 13
  • Next →
Dysfunction of the MDM2/p53 axis is linked to premature aging
Davor Lessel, … , Carol Prives, Christian Kubisch
Davor Lessel, … , Carol Prives, Christian Kubisch
Published August 28, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92171.
View: Text | PDF

Dysfunction of the MDM2/p53 axis is linked to premature aging

  • Text
  • PDF
Abstract

The tumor suppressor p53, a master regulator of the cellular response to stress, is tightly regulated by the E3 ubiquitin ligase MDM2 via an autoregulatory feedback loop. In addition to its well-established role in tumorigenesis, p53 has also been associated with aging in mice. Several mouse models with aberrantly increased p53 activity display signs of premature aging. However, the relationship between dysfunction of the MDM2/p53 axis and human aging remains elusive. Here, we have identified an antiterminating homozygous germline mutation in MDM2 in a patient affected by a segmental progeroid syndrome. We show that this mutation abrogates MDM2 activity, thereby resulting in enhanced levels and stability of p53. Analysis of the patient’s primary cells, genome-edited cells, and in vitro and in vivo analyses confirmed the MDM2 mutation’s aberrant regulation of p53 activity. Functional data from a zebrafish model further demonstrated that mutant Mdm2 was unable to rescue a p53-induced apoptotic phenotype. Altogether, our findings indicate that mutant MDM2 is a likely driver of the observed segmental form of progeria.

Authors

Davor Lessel, Danyi Wu, Carlos Trujillo, Thomas Ramezani, Ivana Lessel, Mohammad K. Alwasiyah, Bidisha Saha, Fuki M. Hisama, Katrin Rading, Ingrid Goebel, Petra Schütz, Günter Speit, Josef Högel, Holger Thiele, Gudrun Nürnberg, Peter Nürnberg, Matthias Hammerschmidt, Yan Zhu, David R. Tong, Chen Katz, George M. Martin, Junko Oshima, Carol Prives, Christian Kubisch

×

FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging
Hanjun Li, … , Zhengju Yao, Xizhi Guo
Hanjun Li, … , Zhengju Yao, Xizhi Guo
Published February 27, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89511.
View: Text | PDF

FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging

  • Text
  • PDF
Abstract

A hallmark of aged mesenchymal stem/progenitor cells (MSCs) in bone marrow is the pivot of differentiation potency from osteoblast to adipocyte coupled with a decrease in self-renewal capacity. However, how these cellular events are orchestrated in the aging progress is not fully understood. In this study, we have used molecular and genetic approaches to investigate the role of forkhead box P1 (FOXP1) in transcriptional control of MSC senescence. In bone marrow MSCs, FOXP1 expression levels declined with age in an inverse manner with those of the senescence marker p16INK4A. Conditional depletion of Foxp1 in bone marrow MSCs led to premature aging characteristics, including increased bone marrow adiposity, decreased bone mass, and impaired MSC self-renewal capacity in mice. At the molecular level, FOXP1 regulated cell-fate choice of MSCs through interactions with the CEBPβ/δ complex and recombination signal binding protein for immunoglobulin κ J region (RBPjκ), key modulators of adipogenesis and osteogenesis, respectively. Loss of p16INK4A in Foxp1-deficient MSCs partially rescued the defects in replication capacity and bone mass accrual. Promoter occupancy analyses revealed that FOXP1 directly represses transcription of p16INK4A. These results indicate that FOXP1 attenuates MSC senescence by orchestrating their cell-fate switch while maintaining their replicative capacity in a dose- and age-dependent manner.

Authors

Hanjun Li, Pei Liu, Shuqin Xu, Yinghua Li, Joseph D. Dekker, Baojie Li, Ying Fan, Zhenlin Zhang, Yang Hong, Gong Yang, Tingting Tang, Yongxin Ren, Haley O. Tucker, Zhengju Yao, Xizhi Guo

×

Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations
Lindley Maryoung, … , Richard C. Wang, Christine Kim Garcia
Lindley Maryoung, … , Richard C. Wang, Christine Kim Garcia
Published February 13, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI91161.
View: Text | PDF

Somatic mutations in telomerase promoter counterbalance germline loss-of-function mutations

  • Text
  • PDF
Abstract

Germline coding mutations in different telomere-related genes have been linked to autosomal-dominant familial pulmonary fibrosis. Individuals with these inherited mutations demonstrate incomplete penetrance of clinical phenotypes affecting the lung, blood, liver, skin, and other organs. Here, we describe the somatic acquisition of promoter mutations in telomerase reverse transcriptase (TERT) in blood leukocytes of approximately 5% of individuals with inherited loss-of-function coding mutations in TERT or poly(A)-specific ribonuclease (PARN), another gene linked to telomerase function. While these promoter mutations were initially identified as oncogenic drivers of cancer, individuals expressing the mutations have no history of cancer. Neither promoter mutation was found in population-based cohorts of similar or advanced age. The TERT promoter mutations were found more frequently in cis with the WT allele than was the TERT coding sequence mutation. EBV-transformed lymphoblastoid B cell lines (LCLs) derived from subjects with TERT promoter mutations showed increased telomerase expression and activity compared with cell lines from family members with identical coding mutations. TERT promoter mutations resulted in an increased proliferation of LCLs and demonstrated positive selection over time. The persistence and recurrence of noncoding gain-of-function mutations in these cases suggests that telomerase activation is not only safely tolerated but also advantageous for clonal expansion.

Authors

Lindley Maryoung, Yangbo Yue, Ashley Young, Chad A. Newton, Cindy Barba, Nicolai S. C. van Oers, Richard C. Wang, Christine Kim Garcia

×

Nasal neuron PET imaging quantifies neuron generation and degeneration
Genevieve C. Van de Bittner, … , Mark W. Albers, Jacob M. Hooker
Genevieve C. Van de Bittner, … , Mark W. Albers, Jacob M. Hooker
Published January 23, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89162.
View: Text | PDF

Nasal neuron PET imaging quantifies neuron generation and degeneration

  • Text
  • PDF
Abstract

Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.

Authors

Genevieve C. Van de Bittner, Misha M. Riley, Luxiang Cao, Janina Ehses, Scott P. Herrick, Emily L. Ricq, Hsiao-Ying Wey, Michael J. O’Neill, Zeshan Ahmed, Tracey K. Murray, Jaclyn E. Smith, Changning Wang, Frederick A. Schroeder, Mark W. Albers, Jacob M. Hooker

×

Interruption of progerin–lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype
Su-Jin Lee, … , Gyu Yong Song, Bum-Joon Park
Su-Jin Lee, … , Gyu Yong Song, Bum-Joon Park
Published September 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84164.
View: Text | PDF

Interruption of progerin–lamin A/C binding ameliorates Hutchinson-Gilford progeria syndrome phenotype

  • Text
  • PDF
Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is a rare autosomal dominant genetic disease that is caused by a silent mutation of the LMNA gene encoding lamins A and C (lamin A/C). The G608G mutation generates a more accessible splicing donor site than does WT and produces an alternatively spliced product of LMNA called progerin, which is also expressed in normal aged cells. In this study, we determined that progerin binds directly to lamin A/C and induces profound nuclear aberrations. Given this observation, we performed a random screening of a chemical library and identified 3 compounds (JH1, JH4, and JH13) that efficiently block progerin–lamin A/C binding. These 3 chemicals, particularly JH4, alleviated nuclear deformation and reversed senescence markers characteristic of HGPS cells, including growth arrest and senescence-associated β-gal (SA–β-gal) activity. We then used microarray-based analysis to demonstrate that JH4 is able to rescue defects of cell-cycle progression in both HGPS and aged cells. Furthermore, administration of JH4 to LmnaG609G/G609G-mutant mice, which phenocopy human HGPS, resulted in a marked improvement of several progeria phenotypes and an extended lifespan. Together, these findings indicate that specific inhibitors with the ability to block pathological progerin–lamin A/C binding may represent a promising strategy for improving lifespan and health in both HGPS and normal aging.

Authors

Su-Jin Lee, Youn-Sang Jung, Min-Ho Yoon, So-mi Kang, Ah-Young Oh, Jee-Hyun Lee, So-Young Jun, Tae-Gyun Woo, Ho-Young Chun, Sang Kyum Kim, Kyu Jin Chung, Ho-Young Lee, Kyeong Lee, Guanghai Kim, Min-Kyun Na, Nam Chul Ha, Clea Bárcena, José M.P. Freije, Carlos López-Otín, Gyu Yong Song, Bum-Joon Park

×

NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs
Zhenke Wen, … , Jörg J. Goronzy, Cornelia M. Weyand
Zhenke Wen, … , Jörg J. Goronzy, Cornelia M. Weyand
Published April 18, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84181.
View: Text | PDF

NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs

  • Text
  • PDF
Abstract

Immune aging results in progressive loss of both protective immunity and T cell–mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.

Authors

Zhenke Wen, Yasuhiro Shimojima, Tsuyoshi Shirai, Yinyin Li, Jihang Ju, Zhen Yang, Lu Tian, Jörg J. Goronzy, Cornelia M. Weyand

×

Modulation of LMNA splicing as a strategy to treat prelamin A diseases
John M. Lee, … , Stephen G. Young, Loren G. Fong
John M. Lee, … , Stephen G. Young, Loren G. Fong
Published March 21, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85908.
View: Text | PDF

Modulation of LMNA splicing as a strategy to treat prelamin A diseases

  • Text
  • PDF
Abstract

The alternatively spliced products of LMNA, lamin C and prelamin A (the precursor to lamin A), are produced in similar amounts in most tissues and have largely redundant functions. This redundancy suggests that diseases, such as Hutchinson-Gilford progeria syndrome (HGPS), that are caused by prelamin A–specific mutations could be treated by shifting the output of LMNA more toward lamin C. Here, we investigated mechanisms that regulate LMNA mRNA alternative splicing and assessed the feasibility of reducing prelamin A expression in vivo. We identified an exon 11 antisense oligonucleotide (ASO) that increased lamin C production at the expense of prelamin A when transfected into mouse and human fibroblasts. The same ASO also reduced the expression of progerin, the mutant prelamin A protein in HGPS, in fibroblasts derived from patients with HGPS. Mechanistic studies revealed that the exon 11 sequences contain binding sites for serine/arginine-rich splicing factor 2 (SRSF2), and SRSF2 knockdown lowered lamin A production in cells and in murine tissues. Moreover, administration of the exon 11 ASO reduced lamin A expression in wild-type mice and progerin expression in an HGPS mouse model. Together, these studies identify ASO-mediated reduction of prelamin A as a potential strategy to treat prelamin A–specific diseases.

Authors

John M. Lee, Chika Nobumori, Yiping Tu, Catherine Choi, Shao H. Yang, Hea-Jin Jung, Timothy A. Vickers, Frank Rigo, C. Frank Bennett, Stephen G. Young, Loren G. Fong

×

The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity
Michal Dudek, … , Ray P. Boot-Handford, Qing-Jun Meng
Michal Dudek, … , Ray P. Boot-Handford, Qing-Jun Meng
Published December 14, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI82755.
View: Text | PDF

The chondrocyte clock gene Bmal1 controls cartilage homeostasis and integrity

  • Text
  • PDF
Abstract

Osteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage. However, the contribution of the cartilage clock mechanisms to the maintenance of tissue homeostasis is still unclear. Here, we have shown that expression of the core clock transcription factor BMAL1 is disrupted in human OA cartilage and in aged mouse cartilage. Furthermore, targeted Bmal1 ablation in mouse chondrocytes abolished their circadian rhythm and caused progressive degeneration of articular cartilage. We determined that BMAL1 directs the circadian expression of many genes implicated in cartilage homeostasis, including those involved in catabolic, anabolic, and apoptotic pathways. Loss of BMAL1 reduced the levels of phosphorylated SMAD2/3 (p-SMAD2/3) and NFATC2 and decreased expression of the major matrix-related genes Sox9, Acan, and Col2a1, but increased p-SMAD1/5 levels. Together, these results define a regulatory mechanism that links chondrocyte BMAL1 to the maintenance and repair of cartilage and suggest that circadian rhythm disruption is a risk factor for joint diseases such as OA.

Authors

Michal Dudek, Nicole Gossan, Nan Yang, Hee-Jeong Im, Jayalath P.D. Ruckshanthi, Hikari Yoshitane, Xin Li, Ding Jin, Ping Wang, Maya Boudiffa, Ilaria Bellantuono, Yoshitaka Fukada, Ray P. Boot-Handford, Qing-Jun Meng

×

Immune activation caused by vascular oxidation promotes fibrosis and hypertension
Jing Wu, … , Meena S. Madhur, David G. Harrison
Jing Wu, … , Meena S. Madhur, David G. Harrison
Published November 23, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI80761.
View: Text | PDF | Corrigendum

Immune activation caused by vascular oxidation promotes fibrosis and hypertension

  • Text
  • PDF
Abstract

Vascular oxidative injury accompanies many common conditions associated with hypertension. In the present study, we employed mouse models with excessive vascular production of ROS (tgsm/p22phox mice, which overexpress the NADPH oxidase subunit p22phox in smooth muscle, and mice with vascular-specific deletion of extracellular SOD) and have shown that these animals develop vascular collagen deposition, aortic stiffening, renal dysfunction, and hypertension with age. T cells from tgsm/p22phox mice produced high levels of IL-17A and IFN-γ. Crossing tgsm/p22phox mice with lymphocyte-deficient Rag1–/– mice eliminated vascular inflammation, aortic stiffening, renal dysfunction, and hypertension; however, adoptive transfer of T cells restored these processes. Isoketal-protein adducts, which are immunogenic, were increased in aortas, DCs, and macrophages of tgsm/p22phox mice. Autologous pulsing with tgsm/p22phox aortic homogenates promoted DCs of tgsm/p22phox mice to stimulate T cell proliferation and production of IFN-γ, IL-17A, and TNF-α. Treatment with the superoxide scavenger tempol or the isoketal scavenger 2-hydroxybenzylamine (2-HOBA) normalized blood pressure; prevented vascular inflammation, aortic stiffening, and hypertension; and prevented DC and T cell activation. Moreover, in human aortas, the aortic content of isoketal adducts correlated with fibrosis and inflammation severity. Together, these results define a pathway linking vascular oxidant stress to immune activation and aortic stiffening and provide insight into the systemic inflammation encountered in common vascular diseases.

Authors

Jing Wu, Mohamed A. Saleh, Annet Kirabo, Hana A. Itani, Kim Ramil C. Montaniel, Liang Xiao, Wei Chen, Raymond L. Mernaugh, Hua Cai, Kenneth E. Bernstein, Jörg J. Goronzy, Cornelia M. Weyand, John A. Curci, Natalia R. Barbaro, Heitor Moreno, Sean S. Davies, L. Jackson Roberts II, Meena S. Madhur, David G. Harrison

×

Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors
Curtis J. Henry, … , Charles A. Dinarello, James DeGregori
Curtis J. Henry, … , Charles A. Dinarello, James DeGregori
Published November 9, 2015
Citation Information: J Clin Invest. 2015. https://doi.org/10.1172/JCI83024.
View: Text | PDF

Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

  • Text
  • PDF
Abstract

The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed from hematopoietic stem cells (HSCs) transferred from young mice into aged animals exhibited similar fitness defects. We further demonstrated that ectopic expression of the oncogenes BCR-ABL, NRASV12, or Myc restored B cell progenitor fitness, leading to selection for oncogenically initiated cells and leukemogenesis specifically in the context of an aged hematopoietic system. Aging was associated with increased inflammation in the BM microenvironment, and induction of inflammation in young mice phenocopied aging-associated B lymphopoiesis. Conversely, a reduction of inflammation in aged mice via transgenic expression of α-1-antitrypsin or IL-37 preserved the function of B cell progenitors and prevented NRASV12-mediated oncogenesis. We conclude that chronic inflammatory microenvironments in old age lead to reductions in the fitness of B cell progenitor populations. This reduced progenitor pool fitness engenders selection for cells harboring oncogenic mutations, in part due to their ability to correct aging-associated functional defects. Thus, modulation of inflammation — a common feature of aging — has the potential to limit aging-associated oncogenesis.

Authors

Curtis J. Henry, Matias Casás-Selves, Jihye Kim, Vadym Zaberezhnyy, Leila Aghili, Ashley E. Daniel, Linda Jimenez, Tania Azam, Eoin N. McNamee, Eric T. Clambey, Jelena Klawitter, Natalie J. Serkova, Aik Choon Tan, Charles A. Dinarello, James DeGregori

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 12
  • 13
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts