[PDF][PDF] The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake

Á de Mingo Pulido, K Hänggi, DP Celias, A Gardner… - Immunity, 2021 - cell.com
Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical
trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells
(cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that
increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I
interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy
of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and …
Summary
Blockade of the inhibitory receptor TIM-3 shows efficacy in cancer immunotherapy clinical trials. TIM-3 inhibits production of the chemokine CXCL9 by XCR1+ classical dendritic cells (cDC1), thereby limiting antitumor immunity in mammary carcinomas. We found that increased CXCL9 expression by splenic cDC1s upon TIM-3 blockade required type I interferons and extracellular DNA. Chemokine expression as well as combinatorial efficacy of TIM-3 blockade and paclitaxel chemotherapy were impaired by deletion of Cgas and Sting. TIM-3 blockade increased uptake of extracellular DNA by cDC1 through an endocytic process that resulted in cytoplasmic localization. DNA uptake and efficacy of TIM-3 blockade required DNA binding by HMGB1, while galectin-9-induced cell surface clustering of TIM-3 was necessary for its suppressive function. Human peripheral blood cDC1s also took up extracellular DNA upon TIM-3 blockade. Thus, TIM-3 regulates endocytosis of extracellular DNA and activation of the cytoplasmic DNA sensing cGAS-STING pathway in cDC1s, with implications for understanding the mechanisms underlying TIM-3 immunotherapy.
cell.com