[HTML][HTML] Immunometabolic checkpoints of Treg dynamics: adaptation to microenvironmental opportunities and challenges

I Pacella, S Piconese - Frontiers in immunology, 2019 - frontiersin.org
I Pacella, S Piconese
Frontiers in immunology, 2019frontiersin.org
In the last decades, immunologists have started to consider intracellular metabolism in
relation with the dynamics and functions of immune cells, especially when it became clear
that microenvironmental alterations were associated with immune dysfunctions. Regulatory
T cells (Tregs) are equipped with a variety of immunological and metabolic sensors, and
encompass circulating as well as tissue-resident cells, being therefore particularly
susceptible to microenvironmental cues. Moreover, Tregs undergo metabolic …
In the last decades, immunologists have started to consider intracellular metabolism in relation with the dynamics and functions of immune cells, especially when it became clear that microenvironmental alterations were associated with immune dysfunctions. Regulatory T cells (Tregs) are equipped with a variety of immunological and metabolic sensors, and encompass circulating as well as tissue-resident cells, being therefore particularly susceptible to microenvironmental cues. Moreover, Tregs undergo metabolic reprogramming over the course of an immune response, allowing the use of alternate substrates and engaging different metabolic pathways for energetic demands. The study of metabolic mechanisms supporting Treg dynamics has led to puzzling results, due to several limitations, including the heterogeneity of population in the same tissues and between different tissues, the difficulty in considering all the interconnected metabolic pathways during a cellular process, and the differences between in vitro and in vivo conditions. Therefore, Treg reliance on different metabolic routes (oxidation rather than glycolysis) has been a matter of controversy in recent years. Metabolic reprogramming and altered bioenergetics are now identified as hallmarks in cancer, and are employed by cancer cells to determine the availability of metabolites and molecules, thus affecting the fate of tumor-infiltrating immune cells. In particular, the tumor microenvironment forces a metabolic restriction and a plethora of synergistic intrinsic and extrinsic stresses, leading to an impaired anti-tumor immunity and favoring Treg generation, expansion, and suppressive function. This leads to the understanding that Tregs and conventional T cells have different capability to adapt to metabolic hurdles. Considering the role of Tregs in dictating the outcome of tumor-specific responses, it would be important to understand the specific Treg metabolic profile that provides an advantage at the tumor site, to finally identify new targets for therapy. In this review, we will report and discuss the major recent findings about the metabolic pathways required for Treg development, expansion, migration and functions, in relation to tissue-derived signals. We will focus on the adipose tissue and the liver, where Tregs are exposed to a variety of metabolites, and on the tumor microenvironment as the context where Tregs develop the ability to adapt to perturbations in nutrient accessibility.
Frontiers