Cross-protection against Marburg virus strains by using a live, attenuated recombinant vaccine

KM Daddario-DiCaprio, TW Geisbert… - Journal of …, 2006 - Am Soc Microbiol
KM Daddario-DiCaprio, TW Geisbert, JB Geisbert, U Ströher, LE Hensley, A Grolla…
Journal of virology, 2006Am Soc Microbiol
Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever,
including a recent highly publicized outbreak in Angola that produced severe disease and
significant mortality in infected patients. MARV is also considered to have potential as a
biological weapon. Recently, we reported the development of a promising attenuated,
replication-competent vaccine against MARV based on recombinant vesicular stomatitis
virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVΔG/MARVGP …
Abstract
Marburg virus (MARV) has been associated with sporadic episodes of hemorrhagic fever, including a recent highly publicized outbreak in Angola that produced severe disease and significant mortality in infected patients. MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV) expressing the glycoprotein of the Musoke strain of MARV (VSVΔG/MARVGP-Musoke). We used this vaccine to demonstrate complete protection of cynomolgus monkeys against a homologous MARV challenge. While these results are highly encouraging, an effective vaccine would need to confer protection against all relevant strains of MARV. Here, we evaluated the protective efficacy of the VSVΔG/MARVGP-Musoke vaccine against two heterologous MARV strains, the seemingly more pathogenic Angola strain and the more distantly related Ravn strain. In this study, seven cynomolgus monkeys were vaccinated with the VSVΔG/MARVGP-Musoke vector. Three of these animals were challenged with the Angola strain, three with the Ravn strain, and a single animal with the Musoke strain of MARV. Two animals served as controls and were each injected with a nonspecific VSV vector; these controls were challenged with the Angola and Ravn strains, respectively. Both controls succumbed to challenge by day 8. However, none of the specifically vaccinated animals showed any evidence of illness either from the vaccination or from the MARV challenges and all of these animals survived. These data suggest that the VSVΔG/MARVGP-Musoke vaccine should be sufficient to protect against all known MARV strains.
American Society for Microbiology