COVID–19-associated coagulopathy: An exploration of mechanisms

ME Colling, Y Kanthi - Vascular Medicine, 2020 - journals.sagepub.com
ME Colling, Y Kanthi
Vascular Medicine, 2020journals.sagepub.com
An ongoing global pandemic of viral pneumonia (coronavirus disease [COVID-19]), due to
the virus SARS-CoV-2, has infected millions of people and remains a threat to many more.
Most critically ill patients have respiratory failure and there is an international effort to
understand mechanisms and predictors of disease severity. Coagulopathy, characterized by
elevations in D-dimer and fibrin (ogen) degradation products (FDPs), is associated with
critical illness and mortality in patients with COVID-19. Furthermore, increasing reports of …
An ongoing global pandemic of viral pneumonia (coronavirus disease [COVID-19]), due to the virus SARS-CoV-2, has infected millions of people and remains a threat to many more. Most critically ill patients have respiratory failure and there is an international effort to understand mechanisms and predictors of disease severity. Coagulopathy, characterized by elevations in D-dimer and fibrin(ogen) degradation products (FDPs), is associated with critical illness and mortality in patients with COVID-19. Furthermore, increasing reports of microvascular and macrovascular thrombi suggest that hemostatic imbalances may contribute to the pathophysiology of SARS-CoV-2 infection. We review the laboratory and clinical findings of patients with COVID–19-associated coagulopathy, and prior studies of hemostasis in other viral infections and acute respiratory distress syndrome. We hypothesize that an imbalance between coagulation and inflammation may result in a hypercoagulable state. Although thrombosis initiated by the innate immune system is hypothesized to limit SARS-CoV-2 dissemination, aberrant activation of this system can cause endothelial injury resulting in loss of thromboprotective mechanisms, excess thrombin generation, and dysregulation of fibrinolysis and thrombosis. The role various components including neutrophils, neutrophil extracellular traps, activated platelets, microparticles, clotting factors, inflammatory cytokines, and complement play in this process remains an area of active investigation and ongoing clinical trials target these different pathways in COVID-19.
Sage Journals