MHC-positive, ramified macrophages in the normal and injured rat peripheral nervous system

S Monaco, J Gehrmann, G Raivich… - Journal of …, 1992 - Springer
S Monaco, J Gehrmann, G Raivich, GW Kreutzberg
Journal of neurocytology, 1992Springer
Resident endoneurial macrophages form a prominent, but little recognized component of the
PNS. We have studied immunocytochemically the distribution, morphology and
immunophenotype of endoneurial macrophages in several normal peripheral nerves of the
rat. In addition, we investigated the macrophage response following crush injury of the
sciatic nerve. Resident endoneurial macrophages had a ramified morphology with
processes oriented parallel to the long axis of nerve fibres. They were positive for several …
Summary
Resident endoneurial macrophages form a prominent, but little recognized component of the PNS. We have studied immunocytochemically the distribution, morphology and immunophenotype of endoneurial macrophages in several normal peripheral nerves of the rat. In addition, we investigated the macrophage response following crush injury of the sciatic nerve.
Resident endoneurial macrophages had a ramified morphology with processes oriented parallel to the long axis of nerve fibres. They were positive for several monocyte/macrophage markers such as ED1, ED2 and the recently-described MUC 101 and MUC 102 antibodies. They furthermore expressed the complement type three receptor, the CD4 antigen and MHC class I and II molecules. These results were consistent in all the peripheral nerves studied. In addition, 1000 rad of γ-irradiation led to a strong reduction in the number of MHC class II-positive ramified cells in the peripheral nerves similar to that observed in other peripheral organs such as the heart. A considerable percentage of resident macrophages in the PNS and/or their precursor cells are therefore radiosensitive and could be related to the lineage of dendritic cells.
Following crush injury, ED1-3-, OX-42-, MUC 101- and MUC 102-positive round macrophages were observed from 24 h postlesion onward at the site of trauma. In the distal part, they were observed to form strings of round, foamy macrophages probably involved in myelin phagocytosis. In contrast, the number of MHC class II-positive resident macrophages was only slightly increased at the site of trauma and in the distal part. These cells transformed from a ramified to a round morphology, but did not appear as typical strings of foamy macrophages.
These results demonstrate that the PNS is provided with a resident macrophage population analogous in many respects to microglial cells in the CNS. These constitutively MHC class II-positive PNS microglial-like cells could act as the major antigen-presenting cells in the peripheral nerve. They may thus constitute a local immune defense system of the PNS with a function similar to that of microglial cells in the CNS.
Springer