[HTML][HTML] Caspase-2 deficiency promotes aberrant DNA-damage response and genetic instability

L Dorstyn, J Puccini, CH Wilson, S Shalini… - Cell Death & …, 2012 - nature.com
L Dorstyn, J Puccini, CH Wilson, S Shalini, M Nicola, S Moore, S Kumar
Cell Death & Differentiation, 2012nature.com
Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and
non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling
and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances
E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the
EμMyc mouse model. Caspase-2−/− mouse embryonic fibroblasts (casp2−/− MEFs) show
aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA …
Abstract
Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2−/− mouse embryonic fibroblasts (casp2−/− MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2−/− MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following γ-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EμMyc lymphoma cells. In addition, casp2−/− MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.
nature.com