Microglia during development and aging

GJ Harry - Pharmacology & therapeutics, 2013 - Elsevier
Pharmacology & therapeutics, 2013Elsevier
Microglia are critical nervous system-specific cells influencing brain development,
maintenance of the neural environment, response to injury, and repair. They contribute to
neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and
clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation
with an expansion following birth with localization stimulated by programmed neuronal
death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to …
Abstract
Microglia are critical nervous system-specific cells influencing brain development, maintenance of the neural environment, response to injury, and repair. They contribute to neuronal proliferation and differentiation, pruning of dying neurons, synaptic remodeling and clearance of debris and aberrant proteins. Colonization of the brain occurs during gestation with an expansion following birth with localization stimulated by programmed neuronal death, synaptic pruning, and axonal degeneration. Changes in microglia phenotype relate to cellular processes including specific neurotransmitter, pattern recognition, or immune-related receptor activation. Upon activation, microglia cells have the capacity to release a number of substances, e.g., cytokines, chemokines, nitric oxide, and reactive oxygen species, which could be detrimental or beneficial to the surrounding cells. With aging, microglia shift their morphology and may display diminished capacity for normal functions related to migration, clearance, and the ability to shift from a pro-inflammatory to an anti-inflammatory state to regulate injury and repair. This shift in microglia potentially contributes to increased susceptibility and neurodegeneration as a function of age. In the current review, information is provided on the colonization of the brain by microglia, the expression of various pattern recognition receptors to regulate migration and phagocytosis, and the shift in related functions that occur in normal aging.
Elsevier