Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors

L Zhang, D Lin, X Sun, U Curth, C Drosten… - Science, 2020 - science.org
L Zhang, D Lin, X Sun, U Curth, C Drosten, L Sauerhering, S Becker, K Rox, R Hilgenfeld
Science, 2020science.org
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory
syndrome–coronavirus 2 (SARS-CoV-2) is a global health emergency. An attractive drug
target among coronaviruses is the main protease (Mpro, also called 3CLpro) because of its
essential role in processing the polyproteins that are translated from the viral RNA. We
report the x-ray structures of the unliganded SARS-CoV-2 Mpro and its complex with an α-
ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3 …
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is a global health emergency. An attractive drug target among coronaviruses is the main protease (Mpro, also called 3CLpro) because of its essential role in processing the polyproteins that are translated from the viral RNA. We report the x-ray structures of the unliganded SARS-CoV-2 Mpro and its complex with an α-ketoamide inhibitor. This was derived from a previously designed inhibitor but with the P3-P2 amide bond incorporated into a pyridone ring to enhance the half-life of the compound in plasma. On the basis of the unliganded structure, we developed the lead compound into a potent inhibitor of the SARS-CoV-2 Mpro. The pharmacokinetic characterization of the optimized inhibitor reveals a pronounced lung tropism and suitability for administration by the inhalative route.
AAAS