[HTML][HTML] Histone/protein deacetylase 11 targeting promotes Foxp3+ Treg function

J Huang, L Wang, S Dahiya, UH Beier, R Han… - Scientific reports, 2017 - nature.com
J Huang, L Wang, S Dahiya, UH Beier, R Han, A Samanta, J Bergman, EM Sotomayor…
Scientific reports, 2017nature.com
Current interest in Foxp3+ T-regulatory (Treg) cells as therapeutic targets in transplantation
is largely focused on their harvesting pre-transplant, expansion and infusion post-
transplantation. An alternate strategy of pharmacologic modulation of Treg function using
histone/protein deacetylase inhibitors (HDACi) may allow more titratable and longer-term
dosing. However, the effects of broadly acting HDACi vary, such that HDAC isoform-
selective targeting is likely required. We report data from mice with constitutive or conditional …
Abstract
Current interest in Foxp3+ T-regulatory (Treg) cells as therapeutic targets in transplantation is largely focused on their harvesting pre-transplant, expansion and infusion post-transplantation. An alternate strategy of pharmacologic modulation of Treg function using histone/protein deacetylase inhibitors (HDACi) may allow more titratable and longer-term dosing. However, the effects of broadly acting HDACi vary, such that HDAC isoform-selective targeting is likely required. We report data from mice with constitutive or conditional deletion of HDAC11 within Foxp3+ Treg cells, and their use, along with small molecule HDAC11 inhibitors, in allograft models. Global HDAC11 deletion had no effect on health or development, and compared to WT controls, Foxp3+ Tregs lacking HDAC11 showed increased suppressive function, and increased expression of Foxp3 and TGF-β. Likewise, compared to WT recipients, conditional deletion of HDAC11 within Tregs led to long-term survival of fully MHC-mismatched cardiac allografts, and prevented development of transplant arteriosclerosis in an MHC class II-mismatched allograft model. The translational significance of HDAC11 targeting was shown by the ability of an HDAC11i to promote long-term allograft allografts in fully MHC-disparate strains. These data are powerful stimuli for the further development and testing of HDAC11-selective pharmacologic inhibitors, and may ultimately provide new therapies for transplantation and autoimmune diseases.
nature.com