Manganese activates NLRP3 inflammasome signaling and propagates exosomal release of ASC in microglial cells

S Sarkar, D Rokad, E Malovic, J Luo… - Science …, 2019 - science.org
Science Signaling, 2019science.org
Chronic, sustained inflammation underlies many pathological conditions, including
neurodegenerative diseases. Divalent manganese (Mn2+) exposure can stimulate
neurotoxicity by increasing inflammation. In this study, we examined whether Mn2+ activates
the multiprotein NLRP3 inflammasome complex to promote neuroinflammation. Exposing
activated mouse microglial cells to Mn2+ substantially augmented NLRP3 abundance,
caspase-1 cleavage, and maturation of the inflammatory cytokine interleukin-1β (IL-1β) …
Chronic, sustained inflammation underlies many pathological conditions, including neurodegenerative diseases. Divalent manganese (Mn2+) exposure can stimulate neurotoxicity by increasing inflammation. In this study, we examined whether Mn2+ activates the multiprotein NLRP3 inflammasome complex to promote neuroinflammation. Exposing activated mouse microglial cells to Mn2+ substantially augmented NLRP3 abundance, caspase-1 cleavage, and maturation of the inflammatory cytokine interleukin-1β (IL-1β). Exposure of mice to Mn2+ had similar effects in brain microglial cells. Furthermore, Mn2+ impaired mitochondrial ATP generation, basal respiratory rate, and spare capacity in microglial cells. These data suggest that Mn-induced mitochondrial defects drove the inflammasome signal amplification. We found that Mn induced cell-to-cell transfer of the inflammasome adaptor protein ASC in exosomes. Furthermore, primed microglial cells exposed to exosomes from Mn-treated mice released more IL-1β than did cells exposed to exosomes from control-treated animals. We also observed that welders exposed to manganese-containing fumes had plasma exosomes that contained more ASC than did those from a matched control group. Together, these results suggest that the divalent metal manganese acts as a key amplifier of NLRP3 inflammasome signaling and exosomal ASC release.
AAAS