[PDF][PDF] Lamins organize the global three-dimensional genome from the nuclear periphery

X Zheng, J Hu, S Yue, L Kristiani, M Kim, M Sauria… - Molecular Cell, 2018 - cell.com
Molecular Cell, 2018cell.com
Lamins are structural components of the nuclear lamina (NL) that regulate genome
organization and gene expression, but the mechanism remains unclear. Using Hi-C, we
show that lamins maintain proper interactions among the topologically associated chromatin
domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ
hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that
lamin loss causes expansion or detachment of specific LADs in mouse ESCs. The detached …
Summary
Lamins are structural components of the nuclear lamina (NL) that regulate genome organization and gene expression, but the mechanism remains unclear. Using Hi-C, we show that lamins maintain proper interactions among the topologically associated chromatin domains (TADs) but not their overall architecture. Combining Hi-C with fluorescence in situ hybridization (FISH) and analyses of lamina-associated domains (LADs), we reveal that lamin loss causes expansion or detachment of specific LADs in mouse ESCs. The detached LADs disrupt 3D interactions of both LADs and interior chromatin. 4C and epigenome analyses further demonstrate that lamins maintain the active and repressive chromatin domains among different TADs. By combining these studies with transcriptome analyses, we found a significant correlation between transcription changes and the interaction changes of active and inactive chromatin domains These findings provide a foundation to further study how the nuclear periphery impacts genome organization and transcription in development and NL-associated diseases.
cell.com