[HTML][HTML] Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia

T Nijenhuis, V Vallon… - The Journal of …, 2005 - Am Soc Clin Investig
T Nijenhuis, V Vallon, AWCM van der Kemp, J Loffing, JGJ Hoenderop, RJM Bindels
The Journal of clinical investigation, 2005Am Soc Clin Investig
Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl–cotransporter
(NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the
accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that
enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in
distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments
in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during …
Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during chronic hydrochlorothiazide (HCTZ) treatment, whereas Ca2+ reabsorption in distal convolution appeared unaffected. Second, HCTZ administration still induced hypocalciuria in transient receptor potential channel subfamily V, member 5–knockout (Trpv5-knockout) mice, in which active distal Ca2+ reabsorption is abolished due to inactivation of the epithelial Ca2+ channel Trpv5. Third, HCTZ upregulated the Na+/H+ exchanger, responsible for the majority of Na+ and, consequently, Ca2+ reabsorption in the proximal tubule, while the expression of proteins involved in active Ca2+ transport was unaltered. Fourth, experiments addressing the time-dependent effect of a single dose of HCTZ showed that the development of hypocalciuria parallels a compensatory increase in Na+ reabsorption secondary to an initial natriuresis. Hypomagnesemia developed during chronic HCTZ administration and in NCC-knockout mice, an animal model of Gitelman syndrome, accompanied by downregulation of the epithelial Mg2+ channel transient receptor potential channel subfamily M, member 6 (Trpm6). Thus, Trpm6 downregulation may represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or inactivation.
The Journal of Clinical Investigation