[HTML][HTML] K-rasG12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis

Y Hu, W Lu, G Chen, P Wang, Z Chen, Y Zhou… - Cell research, 2012 - nature.com
Y Hu, W Lu, G Chen, P Wang, Z Chen, Y Zhou, M Ogasawara, D Trachootham, L Feng…
Cell research, 2012nature.com
Increased aerobic glycolysis and oxidative stress are important features of cancer cell
metabolism, but the underlying biochemical and molecular mechanisms remain elusive.
Using a tetracycline inducible model, we show that activation of K-ras G12V causes
mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and
increased generation of reactive oxygen species. The K-RAS protein is associated with
mitochondria, and induces a rapid suppression of respiratory chain complex-I and a …
Abstract
Increased aerobic glycolysis and oxidative stress are important features of cancer cell metabolism, but the underlying biochemical and molecular mechanisms remain elusive. Using a tetracycline inducible model, we show that activation of K-ras G12V causes mitochondrial dysfunction, leading to decreased respiration, elevated glycolysis, and increased generation of reactive oxygen species. The K-RAS protein is associated with mitochondria, and induces a rapid suppression of respiratory chain complex-I and a decrease in mitochondrial transmembrane potential by affecting the cyclosporin-sensitive permeability transition pore. Furthermore, pre-induction of K-ras G12V expression in vitro to allow metabolic adaptation to high glycolytic metabolism enhances the ability of the transformed cells to form tumor in vivo. Our study suggests that induction of mitochondrial dysfunction is an important mechanism by which K-ras G12V causes metabolic changes and ROS stress in cancer cells, and promotes tumor development.
nature.com