Opening of connexin 43 hemichannels is increased by lowering intracellular redox potential

MA Retamal, KA Schalper, KF Shoji… - Proceedings of the …, 2007 - National Acad Sciences
MA Retamal, KA Schalper, KF Shoji, MVL Bennett, JC Sáez
Proceedings of the National Academy of Sciences, 2007National Acad Sciences
Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or
connexons) that can open to allow permeation of small molecules. Opening of Cx43
hemichannels is infrequent in normal extracellular Ca2+ and enhanced by low Ca2+,
positive membrane potentials, and dephosphorylation of critical residues. Here we report
that lowering intracellular redox potential increases Cx43 hemichannel open probability
under otherwise normal conditions. We studied dye uptake and single-channel activity in …
Nonjunctional membrane in many cells contains connexin gap junction hemichannels (or connexons) that can open to allow permeation of small molecules. Opening of Cx43 hemichannels is infrequent in normal extracellular Ca2+ and enhanced by low Ca2+, positive membrane potentials, and dephosphorylation of critical residues. Here we report that lowering intracellular redox potential increases Cx43 hemichannel open probability under otherwise normal conditions. We studied dye uptake and single-channel activity in HeLa cells transfected with wild-type Cx43, Cx43 with enhanced GFP attached to its C terminus (Cx43-EGFP), and Cx43 with enhanced GFP attached to its N terminus (EGFP-Cx43). Dithiothreitol [(DTT) 10 mM], a membrane permeant-reducing agent, increased the rate of dye uptake by cells expressing Cx43 and Cx43-EGFP, but not by parental cells or cells expressing EGFP-Cx43. Induced dye uptake was blocked by La3+, by a peptide gap junction and hemichannel blocker (gap 26), and by flufenamic acid. DTT increased Cx43-EGFP hemichannel opening at positive voltages. Bath application of reduced glutathione, a membrane impermeant-reducing agent, did not increase dye uptake, but glutathione in the recording pipette increased hemichannel opening at positive voltages, suggesting that it acted intracellularly. DTT caused little change in levels of surface Cx43 or Cx43-EGFP, or in intracellular pH. These findings suggest that lowering intracellular redox potential increases the opening of Cx43 and Cx43-EGFP hemichannels, possibly by action on cytoplasmic cysteine residues in the connexin C terminus.
National Acad Sciences