Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments

V Swarup, D Phaneuf, C Bareil, J Robertson… - Brain, 2011 - academic.oup.com
Brain, 2011academic.oup.com
Transactive response DNA-binding protein 43 ubiquitinated inclusions are a hallmark of
amyotrophic lateral sclerosis and of frontotemporal lobar degeneration with ubiquitin-
positive inclusions. Yet, mutations in TARDBP, the gene encoding these inclusions are
associated with only 3% of sporadic and familial amyotrophic lateral sclerosis. Recent
transgenic mouse studies have revealed a high degree of toxicity due to transactive
response DNA-binding protein 43 proteins when overexpressed under the control of strong …
Abstract
Transactive response DNA-binding protein 43 ubiquitinated inclusions are a hallmark of amyotrophic lateral sclerosis and of frontotemporal lobar degeneration with ubiquitin-positive inclusions. Yet, mutations in TARDBP, the gene encoding these inclusions are associated with only 3% of sporadic and familial amyotrophic lateral sclerosis. Recent transgenic mouse studies have revealed a high degree of toxicity due to transactive response DNA-binding protein 43 proteins when overexpressed under the control of strong neuronal gene promoters, resulting in early paralysis and death, but without the presence of amyotrophic lateral sclerosis-like ubiquitinated transactive response DNA-binding protein 43-positive inclusions. To better mimic human amyotrophic lateral sclerosis, we generated transgenic mice that exhibit moderate and ubiquitous expression of transactive response DNA-binding protein 43 species using genomic fragments that encode wild-type human transactive response DNA-binding protein 43 or familial amyotrophic lateral sclerosis-linked mutant transactive response DNA-binding protein 43 (G348C) and (A315T). These novel transgenic mice develop many age-related pathological and biochemical changes reminiscent of human amyotrophic lateral sclerosis including ubiquitinated transactive response DNA-binding protein 43-positive inclusions, transactive response DNA-binding protein 43 cleavage fragments, intermediate filament abnormalities, axonopathy and neuroinflammation. All three transgenic mouse models (wild-type, G348C and A315T) exhibited impaired learning and memory capabilities during ageing, as well as motor dysfunction. Real-time imaging with the use of biophotonic transactive response DNA-binding protein 43 transgenic mice carrying a glial fibrillary acidic protein-luciferase reporter revealed that the behavioural defects were preceded by induction of astrogliosis, a finding consistent with a role for reactive astrocytes in amyotrophic lateral sclerosis pathogenesis. These novel transactive response DNA-binding protein 43 transgenic mice mimic several characteristics of human amyotrophic lateral sclerosis-frontotemporal lobar degeneration and they should provide valuable animal models for testing therapeutic approaches.
Oxford University Press