Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury

G Courtine, B Song, RR Roy, H Zhong, JE Herrmann… - Nature medicine, 2008 - nature.com
G Courtine, B Song, RR Roy, H Zhong, JE Herrmann, Y Ao, J Qi, VR Edgerton
Nature medicine, 2008nature.com
Spinal cord injuries (SCIs) in humans, and experimental animals,,, are often associated with
varying degrees of spontaneous functional recovery during the first months after injury. Such
recovery is widely attributed to axons spared from injury that descend from the brain and
bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural
basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses
to evaluate mice with various combinations of spatially and temporally separated lateral …
Abstract
Spinal cord injuries (SCIs) in humans, and experimental animals,,, are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections,,,. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.
nature.com