Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans

A Kamalakar, MS Bendre, CL Washam, TW Fowler… - Bone, 2014 - Elsevier
A Kamalakar, MS Bendre, CL Washam, TW Fowler, A Carver, JD Dilley, JW Bracey, NS Akel…
Bone, 2014Elsevier
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change
in the prognosis for the patient and significantly increase the morbidity associated with
disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate
osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis.
In this study, we determined whether circulating levels of IL-8 were associated with
increased bone resorption and breast cancer bone metastasis in patients and investigated …
Abstract
Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (p < 0.05), as well as a correlation between plasma IL-8 and increased bone resorption (p < 0.05), as measured by NTx levels. In a total of 22 ER + and 15 ER − primary invasive ductal carcinomas, all cases examined stained positive for IL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1–77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6–77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7 days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28 days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.
Elsevier