A new, simple method for linking of antibodies to atomic force microscopy tips

A Ebner, L Wildling, ASM Kamruzzahan… - Bioconjugate …, 2007 - ACS Publications
A Ebner, L Wildling, ASM Kamruzzahan, C Rankl, J Wruss, CD Hahn, M Hölzl, R Zhu…
Bioconjugate chemistry, 2007ACS Publications
Functionalization of atomic force microscope (AFM) tips with bioligands converts them into
monomolecular biosensors which can detect complementary receptor molecules on the
sample surface. Flexible PEG tethers are preferred because the bioligand can freely reorient
and locally palpate the sample surface while the AFM tip is moved along. In a well-
established coupling scheme [Hinterdorfer et al.(1996) Proc. Natl. Acad. Sci. USA 93, 3477−
3481], a heterobifunctional PEG linker is used to tether thiol-containing bioligands to amino …
Functionalization of atomic force microscope (AFM) tips with bioligands converts them into monomolecular biosensors which can detect complementary receptor molecules on the sample surface. Flexible PEG tethers are preferred because the bioligand can freely reorient and locally palpate the sample surface while the AFM tip is moved along. In a well-established coupling scheme [Hinterdorfer et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93, 3477−3481], a heterobifunctional PEG linker is used to tether thiol-containing bioligands to amino-functionalized AFM tips. Since antibodies contain no free thiol residues, prederivatization with N-succinimidyl 3-(acetylthio)propionate (SATP) is needed which causes a relatively high demand for antibody. The present study offers a convenient alternative with minimal protein consumption (e.g., 5 μg of protein in 50 μL of buffer) and no prederivatization, using a new heterobifunctional cross-linker that has two different amino-reactive functions. One end is an activated carboxyl (N-hydroxysuccinimide ester) which is much faster to react with the amino groups of the tips than the benzaldehyde function on its other end. The reactivity of the latter is sufficient, however, to covalently bind lysine residues of proteins via Schiff base formation. The method has been critically examined, using biotinylated IgG as bioligand on the tip and mica-bound avidin as complementary receptor. These experiments were well reproduced on amino-functionalized silicon nitride chips where the number of specifically bound IgG molecules (∼2000 per μm2) was estimated from the amount of specifically bound ExtrAvidin-peroxidase conjugate. For a bioscientific application, human rhinovirus particles were tethered to the tip, very-low-density lipoprotein receptor fragments were tethered to mica, and the specific interaction was studied by force microscopy.
ACS Publications