In vivo analysis of cadherin function in the mouse intestinal epithelium: essential roles in adhesion, maintenance of differentiation, and regulation of programmed cell …

ML Hermiston, JI Gordon - The Journal of cell biology, 1995 - rupress.org
ML Hermiston, JI Gordon
The Journal of cell biology, 1995rupress.org
A model system is described for defining the physiologic functions of mammalian cadherins
in vivo. 129/Sv embryonic stem (ES) cells, stably transfected with a dominant negative N-
cadherin mutant (NCAD delta) under the control of a promoter that only functions in
postmitotic enterocytes during their rapid, orderly, and continuous migration up small
intestinal villi, were introduced into normal C57B1/6 (B6) blastocysts. In adult B6<-> 129/Sv
chimeric mice, each villus receives the cellular output of several surrounding monoclonal …
A model system is described for defining the physiologic functions of mammalian cadherins in vivo. 129/Sv embryonic stem (ES) cells, stably transfected with a dominant negative N-cadherin mutant (NCAD delta) under the control of a promoter that only functions in postmitotic enterocytes during their rapid, orderly, and continuous migration up small intestinal villi, were introduced into normal C57B1/6 (B6) blastocysts. In adult B6<->129/Sv chimeric mice, each villus receives the cellular output of several surrounding monoclonal crypts. A polyclonal villus located at the boundary of 129/Sv- and B6-derived intestinal epithelium contains vertical coherent bands of NCAD delta-producing enterocytes plus adjacent bands of normal B6-derived enterocytes. A comparison of the biological properties of these cell populations established that NCAD delta disrupts cell-cell and cell-matrix contacts, increases the rate of migration of enterocytes along the crypt-villus axis, results in a loss of their differentiated polarized phenotype, and produces precocious entry into a death program. These data indicate that enterocytic cadherins are critical cell survival factors that actively maintain intestinal epithelial function in vivo.
rupress.org