Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage–induced brain injury

YC Wang, PF Wang, H Fang, J Chen, XY Xiong… - Stroke, 2013 - Am Heart Assoc
YC Wang, PF Wang, H Fang, J Chen, XY Xiong, QW Yang
Stroke, 2013Am Heart Assoc
Background and Purpose—Accumulating evidence indicates that inflammatory responses
cause secondary injury after intracerebral hemorrhage (ICH). We recently demonstrated the
involvement of toll-like receptor 4 (TLR4) signaling in these processes. The purpose of the
current study was to investigate the protective effect and mechanism of TAK-242 (Ethyl (6R)-
6-[N-(2-chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1-carboxylate, Takeda), a TLR4
antagonist, in an ICH mouse model. Methods—TAK-242 was intraperitoneally injected 6 …
Background and Purpose
Accumulating evidence indicates that inflammatory responses cause secondary injury after intracerebral hemorrhage (ICH). We recently demonstrated the involvement of toll-like receptor 4 (TLR4) signaling in these processes. The purpose of the current study was to investigate the protective effect and mechanism of TAK-242 (Ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl) sulfamoyl] cyclohex-1-ene-1 -carboxylate, Takeda), a TLR4 antagonist, in an ICH mouse model.
Methods
TAK-242 was intraperitoneally injected 6 hours after ICH once daily for 5 successive days. We assessed neurological deficit scores; changes in brain water content; and levels of inflammatory factors, DNA damage, and neuronal degeneration in perihematomal region 1, 3, and 5 days after ICH. Peripheral inflammatory cell infiltration was determined using flow cytometry; and the expression of TLR4 downstream signaling molecules was assessed by Western blot.
Results
TAK-242 significantly reduced brain water content, neurological deficit scores, and levels of inflammatory factors. The levels of DNA damage and neuronal degeneration were also significantly decreased, as was peripheral inflammatory cell infiltration. The expression of TLR4 downstream signaling molecules, including myeloid differentiation primary response gene 88, toll/IR-1(TIR)-domain-containing adaptor protein inducing interferon-beta IκBα, nuclear factor-κBp65, and phosphorylated nuclear factor-κBp65, was significantly downregulated.
Conclusions
The results suggest that TLR4 antagonist reduced inflammatory injury and neurological deficits in a mouse model of ICH. The mechanism may involve decreased expression of signaling molecules downstream of TLR4.
Am Heart Assoc