[PDF][PDF] Mechanical allostery: evidence for a force requirement in the proteolytic activation of Notch

WR Gordon, B Zimmerman, L He, LJ Miles, J Huang… - Developmental cell, 2015 - cell.com
WR Gordon, B Zimmerman, L He, LJ Miles, J Huang, K Tiyanont, DG McArthur, JC Aster
Developmental cell, 2015cell.com
Ligands stimulate Notch receptors by inducing regulated intramembrane proteolysis (RIP) to
produce a transcriptional effector. Notch activation requires unmasking of a metalloprotease
cleavage site remote from the site of ligand binding, raising the question of how proteolytic
sensitivity is achieved. Here, we show that application of physiologically relevant forces to
the Notch1 regulatory switch results in sensitivity to metalloprotease cleavage, and bound
ligands induce Notch signal transduction in cells only in the presence of applied mechanical …
Summary
Ligands stimulate Notch receptors by inducing regulated intramembrane proteolysis (RIP) to produce a transcriptional effector. Notch activation requires unmasking of a metalloprotease cleavage site remote from the site of ligand binding, raising the question of how proteolytic sensitivity is achieved. Here, we show that application of physiologically relevant forces to the Notch1 regulatory switch results in sensitivity to metalloprotease cleavage, and bound ligands induce Notch signal transduction in cells only in the presence of applied mechanical force. Synthetic receptor-ligand systems that remove the native ligand-receptor interaction also activate Notch by inducing proteolysis of the regulatory switch. Together, these studies show that mechanical force exerted by signal-sending cells is required for ligand-induced Notch activation and establish that force-induced proteolysis can act as a mechanism of cellular mechanotransduction.
cell.com