The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding

JH Jennings, G Rizzi, AM Stamatakis, RL Ung… - Science, 2013 - science.org
Science, 2013science.org
The growing prevalence of overeating disorders is a key contributor to the worldwide obesity
epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive
feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated
behavior, including feeding, but the precise functional neurocircuitry that controls LH
neuronal activity to engage feeding has not been defined. We observed that inhibitory
synaptic inputs from the extended amygdala preferentially innervate and suppress the …
The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior, including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding.
AAAS