Energy metabolism of human neutrophils during phagocytosis

N Borregaard, T Herlin - The Journal of clinical investigation, 1982 - Am Soc Clin Investig
N Borregaard, T Herlin
The Journal of clinical investigation, 1982Am Soc Clin Investig
Detailed quantitative studies were performed on the generation and utilization of energy by
resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was
constant during rest, and was not influenced by the presence or absence of glucose in the
medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell. In the
presence of glucose, ATP was generated almost exclusively from lactate produced from
glucose taken up from the surrounding medium. The amount of lactate produced could …
Detailed quantitative studies were performed on the generation and utilization of energy by resting and phagocytosing human neutrophils. The ATP content was 1.9 fmol/cell, was constant during rest, and was not influenced by the presence or absence of glucose in the medium. The intracellular content of phosphocreatine was less than 0.2 fmol/cell.
In the presence of glucose, ATP was generated almost exclusively from lactate produced from glucose taken up from the surrounding medium. The amount of lactate produced could account for 85% of the glucose taken up by the cells, and the intracellular glycosyl store, glycogen, was not drawn upon. The rate of ATP generation as calculated from the rate of lactate production was 1.3 fmol/cell/min. During phagocytosis, there was no measurable increase in glucose consumption or lactate production, and the ATP content fell rapidly to 0.8 fmol/cell. This disappearance of ATP was apparently irreversible since no corresponding increase in ADP or AMP was observed. It therefore appears that this phagocytosis-induced fall in ATP concentration represents all the extra energy utilized in human neutrophils in the presence of glucose.
In the absence of glucose, the rate of ATP generation in the resting cell was considerably smaller, 0.75 fmol/cell per min, as calculated from the rate of glycolysis, which is sustained exclusively by glycogenolysis. Under this condition, however, phagocytosis induces significant enhancement of glycogenolysis and the rate of lactate production is increased by 60%, raising the rate of ATP generation to 1.2 fmol/cell per min. Nonetheless, the ATP content drops significantly from 1.9 to 1.0 fmol/cell.
Neutrophils from patients with chronic granulomatous disease have the same rate of glycolysis and the same ATP content as normal cells, thus confirming that the defective respiration of these cells does not affect their energy metabolism.
The Journal of Clinical Investigation