[HTML][HTML] Role of MeCP2, DNA methylation, and HDACs in regulating synapse function

ET Kavalali, ED Nelson, LM Monteggia - Journal of neurodevelopmental …, 2011 - Springer
Journal of neurodevelopmental disorders, 2011Springer
Over the past several years there has been intense effort to delineate the role of epigenetic
factors, including methyl-CpG-binding protein 2, histone deacetylases, and DNA
methyltransferases, in synaptic function. Studies from our group as well as others have
shown that these key epigenetic mechanisms are critical regulators of synapse formation,
maturation, as well as function. Although most studies have identified selective deficits in
excitatory neurotransmission, the latest work has also uncovered deficits in inhibitory …
Abstract
Over the past several years there has been intense effort to delineate the role of epigenetic factors, including methyl-CpG-binding protein 2, histone deacetylases, and DNA methyltransferases, in synaptic function. Studies from our group as well as others have shown that these key epigenetic mechanisms are critical regulators of synapse formation, maturation, as well as function. Although most studies have identified selective deficits in excitatory neurotransmission, the latest work has also uncovered deficits in inhibitory neurotransmission as well. Despite the rapid pace of advances, the exact synaptic mechanisms and gene targets that mediate these effects on neurotransmission remain unclear. Nevertheless, these findings not only open new avenues for understanding neuronal circuit abnormalities associated with neurodevelopmental disorders but also elucidate potential targets for addressing the pathophysiology of several intractable neuropsychiatric disorders.
Springer