Defects in IL-2R Signaling Contribute to Diminished Maintenance of FOXP3 Expression in CD4+CD25+ Regulatory T-Cells of Type 1 Diabetic Subjects

SA Long, K Cerosaletti, PL Bollyky, M Tatum… - …, 2010 - Am Diabetes Assoc
SA Long, K Cerosaletti, PL Bollyky, M Tatum, H Shilling, S Zhang, ZY Zhang, C Pihoker…
diabetes, 2010Am Diabetes Assoc
OBJECTIVE In humans, multiple genes in the interleukin (IL)-2/IL-2 receptor (IL-2R) pathway
are associated with type 1 diabetes. However, no link between IL-2 responsiveness and
CD4+ CD25+ FOXP3+ regulatory T-cells (Tregs) has been demonstrated in type 1 diabetic
subjects despite the role of these IL-2–dependent cells in controlling autoimmunity. Here, we
address whether altered IL-2 responsiveness impacts persistence of FOXP3 expression in
Tregs of type 1 diabetic subjects. RESEARCH DESIGN AND METHODS Persistence of …
OBJECTIVE
In humans, multiple genes in the interleukin (IL)-2/IL-2 receptor (IL-2R) pathway are associated with type 1 diabetes. However, no link between IL-2 responsiveness and CD4+CD25+FOXP3+ regulatory T-cells (Tregs) has been demonstrated in type 1 diabetic subjects despite the role of these IL-2–dependent cells in controlling autoimmunity. Here, we address whether altered IL-2 responsiveness impacts persistence of FOXP3 expression in Tregs of type 1 diabetic subjects.
RESEARCH DESIGN AND METHODS
Persistence of Tregs was assessed by culturing sorted CD4+CD25hi natural Tregs with IL-2 and measuring FOXP3 expression over time by flow cytometry for control and type 1 diabetic populations. The effects of IL-2 on FOXP3 induction were assessed 48 h after activation of CD4+CD25 T-cells with anti-CD3 antibody. Cytokine receptor expression and signaling upon exposure to IL-2, IL-7, and IL-15 were determined by flow cytometry and Western blot analysis.
RESULTS
Maintenance of FOXP3 expression in CD4+CD25+ Tregs of type 1 diabetic subjects was diminished in the presence of IL-2, but not IL-7. Impaired responsiveness was not linked to altered expression of the IL-2R complex. Instead, IL-2R signaling was reduced in Tregs and total CD4+ T-cells of type 1 diabetic subjects. In some individuals, decreased signal transducer and activator of transcription 5 phosphorylation correlated with significantly higher expression of protein tyrosine phosphatase N2, a negative regulator of IL-2R signaling.
CONCLUSIONS
Aberrant IL-2R signaling in CD4+ T-cells of type 1 diabetic subjects contributes to decreased persistence of FOXP3 expression that may impact establishment of tolerance. These findings suggest novel targets for treatment of type 1 diabetes within the IL-2R pathway and suggest that an altered IL-2R signaling signature may be a biomarker for type 1 diabetes.
Am Diabetes Assoc