[HTML][HTML] A spastic paraplegia mouse model reveals REEP1-dependent ER shaping

C Beetz, N Koch, M Khundadze… - The Journal of …, 2013 - Am Soc Clin Investig
C Beetz, N Koch, M Khundadze, G Zimmer, S Nietzsche, N Hertel, AK Huebner, R Mumtaz…
The Journal of clinical investigation, 2013Am Soc Clin Investig
Axonopathies are a group of clinically diverse disorders characterized by the progressive
degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the
axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is
linked to mutations in several loci known collectively as the spastic paraplegia genes
(SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion
in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We …
Axonopathies are a group of clinically diverse disorders characterized by the progressive degeneration of the axons of specific neurons. In hereditary spastic paraplegia (HSP), the axons of cortical motor neurons degenerate and cause a spastic movement disorder. HSP is linked to mutations in several loci known collectively as the spastic paraplegia genes (SPGs). We identified a heterozygous receptor accessory protein 1 (REEP1) exon 2 deletion in a patient suffering from the autosomal dominantly inherited HSP variant SPG31. We generated the corresponding mouse model to study the underlying cellular pathology. Mice with heterozygous deletion of exon 2 in Reep1 displayed a gait disorder closely resembling SPG31 in humans. Homozygous exon 2 deletion resulted in the complete loss of REEP1 and a more severe phenotype with earlier onset. At the molecular level, we demonstrated that REEP1 is a neuron-specific, membrane-binding, and membrane curvature–inducing protein that resides in the ER. We further show that Reep1 expression was prominent in cortical motor neurons. In REEP1-deficient mice, these neurons showed reduced complexity of the peripheral ER upon ultrastructural analysis. Our study connects proper neuronal ER architecture to long-term axon survival.
The Journal of Clinical Investigation