Homology modeling by the ICM method

T Cardozo, M Totrov, R Abagyan - Proteins: Structure, Function …, 1995 - Wiley Online Library
T Cardozo, M Totrov, R Abagyan
Proteins: Structure, Function, and Bioinformatics, 1995Wiley Online Library
Five models have been built by the ICM method for the Comparative Modeling section of the
Meeting on the Critical Assessment of Techniques for Protein Structure Prediction. The
targets have homologous proteins with known three‐dimensional structure with sequence
identity ranging from 25 to 77%. After alignment of the target sequence with the related three‐
dimensional structure, the modeling procedure consists of two subproblems: side‐chain
prediction and loop prediction. The ICM method approaches these problems with the …
Abstract
Five models have been built by the ICM method for the Comparative Modeling section of the Meeting on the Critical Assessment of Techniques for Protein Structure Prediction. The targets have homologous proteins with known three‐dimensional structure with sequence identity ranging from 25 to 77%. After alignment of the target sequence with the related three‐dimensional structure, the modeling procedure consists of two subproblems: side‐chain prediction and loop prediction. The ICM method approaches these problems with the following steps: (1) a starting model is created based on the homologous structure with the conserved portion fixed and the noncon‐served portion having standard covalent geometry and free torsion angles; (2) the Biased Probability Monte Carlo (BPMC) procedure is applied to search the subspaces of either all the nonconservative side‐chain torsion angles or torsion angles in a loop backbone and surrounding side chains. A special algorithm was designed to generate low‐energy loop deformations. The BPMC procedure globally optimizes the energy function consisting of ECEPP/3 and solvation energy terms. Comparison of the predictions with the NMR or crystallographic solutions reveals a high proportion of correctly predicted side chains. The loops were not correctly predicted because imprinted distortions of the backbone increased the energy of the near‐native conformation and thus made the solution unrecognizable. Interestingly, the energy terms were found to be reliable and the sampling of conformational space sufficient. The implications of this finding for the strategies of future comparative modeling are discussed. © 1995 Wiley‐Liss, Inc.
Wiley Online Library