The B-type lamin is required for somatic repression of testis-specific gene clusters

YY Shevelyov, SA Lavrov… - Proceedings of the …, 2009 - National Acad Sciences
YY Shevelyov, SA Lavrov, LM Mikhaylova, ID Nurminsky, RJ Kulathinal, KS Egorova
Proceedings of the National Academy of Sciences, 2009National Acad Sciences
Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of
diverse species. The genes coordinately misexpressed in diverse diseases are also found in
similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression
of large multigenic regions both in normal development and in its pathological disruptions.
Studies on individual loci suggest that silent clusters of coregulated genes are embedded in
repressed chromatin domains, often localized to the nuclear periphery. To test this model at …
Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDmo, in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDmo. Ablation of LamDmo by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins.
National Acad Sciences